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Background: Current registration methods for diffusion-MRI (dMRI) data mostly focus on white matter (WM) areas.
Recently, dMRI has been employed for the characterization of gray matter (GM) microstructure, emphasizing the need for
registration methods that consider all tissue types.
Purpose: To develop a dMRI registration method based on GM, WM, and cerebrospinal fluid (CSF) tissue probability maps
(TPMs).
Study Type: Retrospective longitudinal study.
Population: Thirty-two healthy participants were scanned twice (legacy data), divided into a training-set (n = 16) and a
test-set (n = 16), and 35 randomly-selected participants from the Human Connectome Project.
Field Strength/Sequence: 3.0T, diffusion-weighted spin-echo echo-planar sequence; T1-weighted spoiled gradient-
recalled echo (SPGR) sequence.
Assessment: A joint segmentation-registration approach was implemented: Diffusion tensor imaging (DTI) maps were clas-
sified into TPMs using machine-learning approaches. The resulting GM, WM, and CSF probability maps were employed as
features for image alignment. Validation was performed on the test dataset and the HCP dataset. Registration perfor-
mance was compared with current mainstream registration tools.
Statistical Tests: Classifiers used for segmentation were evaluated using leave-one-out cross-validation and scored using
Dice-index. Registration success was evaluated by voxel-wise variance, normalized cross-correlation of registered DTI
maps, intra- and inter-subject similarity of the registered TPMs, and region-based intra-subject similarity using an anatomi-
cal atlas. One-way ANOVAs were performed to compare between our method and other registration tools.
Results: The proposed method outperformed mainstream registration tools as indicated by lower voxel-wise variance of
registered DTI maps (SD decrease of 10%) and higher similarity between registered TPMs within and across participants,
for all tissue types (Dice increase of 0.1–0.2; P<0.05).
Data Conclusion: A joint segmentation-registration approach based on diffusion-driven TPMs provides a more accurate
registration of dMRI data, outperforming other registration tools. Our method offers a “translation” of diffusion data into
structural information in the form of TPMs, allowing to directly align diffusion and structural images.
Level of Evidence: 1
Technical Efficacy Stage: 1
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The registration between two MRI scans is a fundamental
step in many types of neuroimaging studies, allowing for

an anatomical comparison between different individuals.
Accurate transformation from each individual’s native space

to a common one, while reducing the intersubject variability,
is essential for group-level analysis.1 Registration is also crucial
for longitudinal studies, in which the same participant is
scanned multiple times, as the comparison between
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timepoints depends on accurate alignment. While several
multimodal registration techniques have been suggested in
recent years,2–5 most default MRI registration tools are based
on unimodal deformable methods, which perform transfor-
mations based on voxels’ intensity values, usually in
T1-weighted (T1w) or T2-weighted (T2w) images.

The registration of diffusion MRI (dMRI) images is
particularly challenging, due to echo-planar imaging (EPI)
sensitivity to magnetic field inhomogeneity, leading to distor-
tions in the image and relatively low contrast between tissue
types.1 The brain’s white matter (WM) is highly visible in
some diffusion-driven maps, such as the fractional anisotropy
(FA), while the cerebrospinal fluid (CSF) is highly visible in
others, such as mean diffusivity (MD) images.6 Therefore,
the boundaries between gray matter (GM) and CSF are diffi-
cult to detect in FA images, while the boundaries between
GM and WM are difficult to detect in MD maps.

Registration methods for diffusion MRI data that rely
on one contrast alone can only account for what is visible in
that contrast and thus may not be sensitive to the distinction
between all tissue types. In an attempt to address this prob-
lem, the recommended registration pipelines in some of the
most common image-processing toolboxes, including FMRIB
Software Library (FSL7;), Statistical Parametric Mapping
(SPM8;) and Diffusion Imaging in Python (DIPY9;), utilize
non-EPI anatomical scans (e.g. T1w, T2w) as an intermediate
space for registering dMRI images.10,11 For example, FSL’s
boundary-based registration12 has been used to align diffusion
images to the T1w space (see also13).

Recently, several alternative approaches for dMRI regis-
tration have been proposed14–18: some of these approaches
rely on registration of the tensor components15 or FA
maps,18 thus favoring areas of high anisotropy, i.e. the WM
tracts. A multicomponent registration approach based on the
different elements of the tensor has shown accurate registra-
tion of FA and WM tracts images, but its performance over
non-WM parts of the brain was not demonstrated.15 Other
approaches16,17 applied different registration methods exclu-
sively over the WM tracts, possibly missing valuable
information.

Registration procedures that focus on the WM are not
adequate for an increasing body of research that uses diffusion
MRI for the characterization of GM microstructure. This
includes measurements of neurite distribution, myelin con-
tent, and glial cells arrangement across the cortex,18 as well as
investigations of GM neuroplasticity following learning.19–22

Importantly, these studies rely on the comparison of GM
structures between individuals or between timepoints, empha-
sizing the need for better registration methods considering all
brain tissues rather than WM only.

We suggest that while a single dMRI contrast (e.g., FA
or MD) cannot distinguish accurately between all three tissue
types (i.e., GM, WM, and CSF), a combination of several

dMRI indices can. dMRI is commonly analyzed using the
diffusion tensor imaging model (DTI), which enables the cal-
culation of FA and MD as well as the three primary direc-
tions of the diffusivity tensor (denoted here as L1, L2, and
L3). As each tissue displays different diffusion characteristics,
multiple diffusion indices may be employed to segment the
brain into GM, WM, and CSF.23–26 We hypothesize that
using machine learning approaches, GM, WM, and CSF tis-
sue probability maps can be generated, and that these TPMs
could then be used to perform registration of dMRI images.

A joint segmentation-registration procedure has been
previously suggested for T1w voxel-based morphometry
(VBM) purposes and has become the basis for SPM’s registra-
tion algorithm for T1w scans.27 A similar approach was
implemented in,28 also for T1w scans.

Thus, the purpose of this study was to develop a joint
segmentation-registration approach for diffusion MRI data,
considering the complete anatomical composition of the brain
and treating all tissue types as features to be matched during
optimizations. In this approach, scans are registered according
to data-driven GM, WM, and CSF probability maps rather
than the original scans’ intensity values.

Methods
Overview
Assuming there is available prior knowledge of tissue segmen-
tation of the common space in the form of tissue probability
maps, we applied the following steps1: Calculated DTI
parameters from the subject’s diffusion-weighted scan: FA
and the three perpendicular diffusion eigenvalues L1, L2, and
L3.2 Used a pretrained classifier to predict voxel-wise tissue
probability maps based on the DTI parameters.3 Calculated a
suitable transformation field from the subject’s native space to
the common space by registering the calculated probability
maps to the supplied TPMs—in our case, the MNI
TPMs.294 Applied the resultant transformation field to the
subject—either on the original diffusion-weighted scan or
directly on the DTI parameters. Figure 1 presents the pro-
posed analysis pipeline.

Data for Algorithm Testing
The proposed algorithm was tested on three datasets: a DTI
Shepp-Logan phantom,30 an experimental legacy dataset,22

and the Human Connectome Project (HCP) dataset.31 The
DTI phantom is described in the Supplementary Methods
and Figs. S1 and S2.

Experimental data: The previously acquired experimen-
tal dataset22 consisted of 32 healthy volunteers (mean age
25.7; SD 3.3, 13 males, all right-handed), with no history of
neurological diseases, psychological disorders, drug or alcohol
abuse, or use of neuropsychiatric medication. All participants
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signed an informed consent form; the research protocol was
approved by the Institutional Review Board.

Data were acquired in 2015 on a GE Signa 3 T scanner
(GE Healthcare, Milwaukee, WI, USA) using a then-standard
protocol. Participants underwent MRI scans at two or three
timepoints approximately an hour apart (only two were used
in this study). The MRI protocol included DTI and conven-
tional anatomical sequences for radiological screening, all
acquired with an eight-channel head-coil. Spin-echo diffusion
weighted echo-planar imaging (DW-EPI) sequences were per-
formed with up to 70 axial slices to cover the whole brain
and resolution of 2.1 mm � 2.1 mm � 2.1 mm
reconstructed to 1.58 mm � 1.58 mm � 2.1 mm (field of
view = 202; acquisition matrix = 96 � 96 reconstructed to
128 � 128). Diffusion parameters were: Δ/δ = 33/26 ms, a
b-value of 1000 s/mm2 was acquired with 30 gradient direc-
tions together with an additional no diffusion weighting
(b0) image. T1-weighted images were acquired with a three-
dimensional spoiled gradient-recalled echo sequence with a
resolution of 1 � 1 � 1 mm3.

All scans were preprocessed using FSL 6.0.3. The
preprocessing included head motion correction, skull strip-
ping, and extraction of the DTI parameters to be used for
segmentation: fractional anisotropy (FA) and the three eigen-
values of the diffusion tensor (L1, L2, and L3). Parameters
were separately demeaned and scaled to unit variance across
all scans (approximating normal distribution). They were
then concatenated to create 4D images of size [W, H, D, 4],
where W, H, D are the spatial dimensions of the original scan
and the fourth dimension contains the four diffusion indices
(FA, L1, L2, and L3).

HCP Data: To further explore the performance of our
method on a state-of-the-art dataset rather than on the clini-
cal, legacy data described above, we used dMRI data from
35 randomly-selected participants from the Human
Connectome Project.31

Diffusion-Based Segmentation
The first step in the proposed registration method (Fig. 1c) is
to create probability maps for each tissue type (GM, WM,

and CSF) based on the DTI parameters derived from the
scan. We propose a machine learning based classifier trained
on a manually labeled dataset, randomly sampled from the
experimental legacy data. The target outputs were 4D images
of size [W, H, D, 4] where W, H, D are the spatial dimen-
sions of the original scan and the fourth dimension consists
of the different probability maps.

The tissue probability maps (TPM) contain four differ-
ent modalities: GM, WM, CSF, and background (BG; non-
brain voxels). Each modality represents the probability of
each voxel’s affinity to that tissue type, with the background
image being used to separate the brain from the rest of the
image, as well as to preserve unitarity of the probability space:

PGM xð ÞþPWM xð ÞþPCSF xð ÞþPBG xð Þ¼ 1 8x � Ω ð1Þ

where PGM, PWM, PCSF, and PBG are the probabilities of the
voxel representing GM, WM, CSF, and non-brain (BG),
respectively. This equation holds for every voxel x in the
MRI image (denoted here as the set Ω).

MANUALLY LABELLED DATASET. Based on the previously-
acquired experimental data,22 a dataset with manually labeled
voxels was created by six neuroanatomists (Table SI), using
an in-house dedicated MATLAB 9.3.0 (MathWorks, Natick,
MA) script for visualizing and labeling of MRI scans (Figs. S3
and S4). A total of 32 scans (the first scan of each of the
32 participants22) were split into a training set (N = 16),
which was used for manual labeling, and a test set (N = 16)
previously unseen by the developed classifier. The resulting
dataset was therefore composed of 16 partially labeled scans,
with 1–2 k voxels from each tissue type labeled in each scan,
totaling approximately 68 k different voxels assigned ground-
truth labels for the classifier’s training; 40.2% of these voxels
were labeled as GM, 27.2% as WM, and 32.6% as CSF. This
ratio is reflected in the weighted loss function of the different
classifiers.

CLASSIFIERS. Segmentation was performed using traditional
machine learning techniques, classifying each voxel as an indi-
vidual object. The following methods were examined: Logistic

FIGURE 1: The proposed method pipeline. Given a DWI scan of a participant (a), the DTI parameters are calculated (b) and inserted
into our classifier (c), resulting in voxel-wise tissue probability maps (TPMs) for that participant (d). Using the MNI pre-existing TPMs
(e) and the proposed probability-based registration method (f), we calculate a transformation field from the participant’s native
space to the MNI common space (g). Applying this transformation (h) on the participant’s DTI images (b) yields diffusion scans in the
MNI common space (i). Inputs for the process are presented in blue, outputs in yellow, major stages of the proposed method in red,
and intermediate calculations in green.
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Regression (LR); Gradient Boosting (GB); and Random For-
ests (RF). These techniques were used after testing known
segmentation tools such as FSL’s FAST32 and DIPY Markov
Random Field based segmentation,9 which yielded
unsatisfying performance on dMRI data, emphasizing the
need for a dedicated dMRI tissue classifier.

The classifiers were trained on the manually labeled
dataset, each voxel having the DTI parameters FA, L1, L2, and
L3 as features. Each classifier was trained as a multi-class prob-
lem, in which the classifier was trained to distinguish between
the three different labels, with the last label (background) deter-
mined by the skull stripping. The TPMs were constructed from
the classifier’s raw output, with no application of arg-max for
hard-labeling. Smoothing was applied to the TPMs in order to
minimize possible effects of single misclassified voxels.

For classifiers’ training, we used available Python librar-
ies: scikit-learn 0.2233 for LR and RF and XGBoost 0.934 for
GB, using weighted categorical cross-entropy as the target loss
function. Each voxel’s classification was determined individu-
ally in order to reduce masking of anatomical features such as
thin WM fibers.

SEGMENTATION VALIDATION. Segmentation performance
was evaluated on images from three sources: a DTI phantom
(see Supplementary Methods), the experimental legacy data,
and the HCP data.

Experimental data: Classifiers’ performance was evalu-
ated on the experimental data using Leave-one-out Cross-
Validation (CV) as follows: Given N manually labeled partici-
pants (in our case, N = 16), all classifiers were trained
N times, each time on a different subset of all voxels from
N � 1 participants, and then tested on the voxels’ subset of
the left-out participant. All classifiers were scored using the
Dice (Sørensen–Dice) index over each tissue type separately
as well as over the dataset as a whole, with a final score for
each classifier type given as an average of all N leave-one-out
training results for that classifier.

HCP data: Of the three classifiers tested on the phan-
tom and experimental data, the one showing the best perfor-
mance was further tested on the HCP data. This classifier’s
segmentation performance was compared to the segmentation
of diffusion images that are already in the T1-space, provided
by the HCP. These can serve as a good approximation to the
DWI segmentation; however, since there is no actual ground
truth, Dice scores between the TPMs generated by our classi-
fier and those from the HCP were calculated over thresholded
maps, with a threshold of 0.66 to ensure evaluation over areas
of high confidence in both methods.

Spatial Registration
The second major step in the proposed algorithm (Fig. 1f)
was applying a spatial registration based on the TPMs gener-
ated in the segmentation step.

REGISTRATION IMPLEMENTATION. Implementation of the
proposed registration1 was done by modifying an existing
Python neuroimaging tool—DIPY’s9 implementation of
Symmetric Normalization (SyN)35 based registration using
normalized cross-correlation (NCC) with the implementation
of36 as a proof-of-concept for our hypothesis. The motivation
for choosing the SyN-NCC implementation derives from its
high ranking in several comparative reviews37,38 relative to
other widely used deformable registration methods over T1w
volumes. Specifically, the use of cross-correlation, which is
calculated over the neighborhood of each voxel, is suited to
our goal of matching prominent spatially similar areas of the
brain in each tissue type. Our modifications are made in two
stages of the implemented algorithm: the cost function and
the transformation application.

MULTIVARIATE COST FUNCTION. The cost function,
which originally handled cases of unimodal 3D scans, was
extended to apply to 4D multivariate images, with the fourth
dimension representing the different TPMs (not unlike the
third dimension in RGB images)—effectively treating the dif-
ferent TPMs as different modalities. The modified NCC cost
function was calculated for each modality separately, with the
result being a summation over all modalities:

NCC x,vð Þ¼

P
z �W x

T z,vð Þ�μTx vð Þ� �
M ϕ zð Þ,vð Þ�μMx vð Þ� �" #2

P
z �W x

T z,vð Þ�μTx vð Þ� �2" # P
z �W x

M ϕ zð Þ,vð Þ�μMx vð Þ� �2" #

ð2Þ

mNCC xð Þ¼
X
v � V

NCC x,vð Þ ð3Þ

mNCCTotal M ,T ,ϕð Þ¼
X
x � Ω

mNCC xð Þ ð4Þ

where x denotes the current voxel; Ω is the voxel space (all
voxels in the image); z�Wx is the voxel in neighborhood of
x; Wx denotes the neighborhood of x—a box centered at x; v
is the current modality (in this study, the current probability
map); V represents the modalities’ space (in this study, the
complete TPM); M is the moving image; T is the target
image; ϕ is the transformation fields; μMx vð Þ denotes the local
means of M around x for modality v, and μTx vð Þ denotes the
local means of T around x for modality v.

As each modality now produces a separate NCC, and
by extension a separate gradient value, the output gradient

1Code is available on: https://github.com/cfirmalovani/tpm_registration_
for_dmri.
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was modified as well to become a summation of the different
modalities’ yielded gradients, thus giving equal weights in the
normalization cost evaluation to the different tissues in
the MRI scan. Based on the work of,36 the final gradients
were calculated as follows:

rϕ xð ÞNCC x,vð Þ¼ 2A
BC

�T � A
C

�M
� �

rϕð Þ r �Mð Þ ð5Þ

rϕ xð ÞNCCmodified xð Þ¼
X

v � V
rϕ xð ÞNCC x,vð Þ ð6Þ

with the following values defined for ease of writing:

A x,vð Þ¼
X
z �W x

T z,vð Þ�μTx vð Þ� �
M ϕ zð Þ,vð Þ�μMx vð Þ� � ð7Þ

B x,vð Þ¼
X

z �W x

T z,vð Þ�μTx vð Þ� �2 ð8Þ

C x,vð Þ¼
X
z �W x

M ϕ zð Þ,vð Þ�μMx vð Þ� �2 ð9Þ

�T x,vð Þ¼T x,vð Þ�μTx vð Þ ð10Þ
�M x,vð Þ¼M ϕ xð Þ,vð Þ�μMx vð Þ ð11Þ

APPLYING THE TRANSFORMATION FIELDS. The transfor-
mation fields update remains the same under our new cost
calculation, but the application of those fields is also modi-
fied: As the different probability maps all reside in the same
space, the transformation was applied to each modality sepa-
rately, and the transformed maps were rejoined to the
updated 4D scan data. Then, as the transformations do not
necessarily uphold the need for unitarity (the sum of all prob-
abilities in each voxel must be equal to one), the transformed
scan was normalized to validate the probability values, with
the new background threshold determined as P
(background) > 0.5.

Mwarped x,vð Þ¼ M ϕ xð Þ,vð ÞP
v � VM ϕ xð Þ,vð Þ ð12Þ

VALIDATING IMAGE REGISTRATION. To test the perfor-
mance of the proposed registration method, we compared its
results with widely-used registration methods implemented in
FSL (6.0.3), SPM,12 and DIPY (1.0, original unmodified ver-
sion). For each of these methods, we used its recommended
target image in the MNI space (since the MNI TPMs can
only be used as targets for our proposed method and not for
current methods that are not based on TPMs). We used FSL
in a pipeline similar to that suggested by the HCP for dMRI
registration.39 It applies a Boundary-Based Registration
(BBR) method12 to register diffusion scans to the counterpart

T1w scans of the same participant, which are then used as an
intermediate step toward the goal registration. The resulting
dual transformation fields were applied over the different
DTI maps. For dMRI registration with SPM and DIPY (SyN
implementation), we used the recommended pipelines.10,11

Both SPM and DIPY registration procedures use deformable
registration from each participant’s b0 image to the MNI-
T2w scan, applying the resulting transformation fields on the
different DTI parameters maps. In order to explore only
the differences arising from registration processes, all scans
were preprocessed by FSL to extract brain masks as well as
the DTI parameters maps, which were then fed into the dif-
ferent registration processes.

The evaluation of the registration success is not trivial,
as there is a need to test registration performance not on the
probability maps—which do not exist for the other
methods—but on the different DTI parameters maps—
specifically on the FA and MD maps. We used three
approaches for assessing registration performance1: Calcula-
tion of the voxel-wise variance of each registered participant
to the average scan—which could be used as a de-facto com-
mon space: the lower the overall voxel-wise variance, the bet-
ter each participant is aligned. The ideal registration will not
yield zero variance across the transformed scans, since inter-
subject variability is still expected due to differences in brain
structure between participants. However, high variance
reflects registration error, as it indicates that different tissues
were registered to the same voxel. Calculating this variance
per voxel also allows determination and analysis of ‘weak
spots’ in the different registration methods, meaning anatom-
ical areas where registration is more susceptible to errors.2

Calculation of the voxel-wise normalized cross-correlation
(NCC) of each registered participant from the average space.
A higher NCC score (which varies between 0 and 1) indicates
a stronger similarity of the registered image to the MNI
image. This evaluation used a window of 9 � 9 � 9 voxels,
with the averaged NCC score used as the evaluation score.3

Calculation of the similarity of the registered probability
maps—both intra-subject (comparing each participant’s two
scans) and intersubject (comparing each participant to all
other participants). A successful registration process would
yield high similarity between registered scans, reflected by
high Dice scores. The higher the score, the better the process
is in transforming different probability maps—and the scans
themselves—to the target common space. Generating proba-
bility maps for all available 64 scans (32 subjects � 2 scans/
subject) and setting the probability threshold at 0.5 for both
GM and WM maps, the Dice scores were calculated between
each scan and all other 63 scans.

An additional test was performed to determine that the
success of our method rise not from the use of a multivariate
registration in general, but from the strength of the TPM
basis: We implemented a multivariate registration process
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based directly on the DTI eigenvalues using the DIPY frame-
work, and compared its performance to those of our method
(see Supplementary Fig. S11 and Table SVII).

It has been previously suggested40 that whole-brain
image similarity and tissue overlap are not the optimal surro-
gate measurements of registration accuracy, advocating for
region-based comparison as a possible evaluation method.
Therefore, in addition to the three evaluation methods
described above, we used an existing anatomical atlas to test
registration performance on a regional basis (see supplemen-
tary Fig. S10 and Table SV).

Finally, we compared the registration performance of
the HCP recommended pipeline, as implemented in the
DIPY toolbox, with that of our proposed method. Both pipe-
lines were run on 35 randomly-chosen participants from the
HCP, and we measured the voxel-wise and averaged standard
deviation from the common space for both FA and MD
images.

STATISTICAL ANALYSIS. To compare the registration perfor-
mance of the proposed method with those of the other tools,
we performed one-way analyses of variance (ANOVA) for
each registration performance measure separately, with the
performance measure (e.g., voxel-wise variance from the aver-
aged image) as the dependent variable and the registration
method (i.e., FSL, SPM, DIPY, and the proposed method) as
the independent variable. Results were considered statistically
significant at P < 0.05.

Results
Testing the proposed method required validation of both seg-
mentation and registration processes. We first report the per-
formance of the different classifiers tested for the
segmentation step on the experimental data (see Supplemen-
tary Results for segmentation of the DTI phantom and the
HCP data—Figs. S5–S8). We then describe the results of
the registration step, based on the segmentation outputs.

Diffusion-Based Segmentation

SEGMENTATION OF THE EXPERIMENTAL DATA. Table 1
shows the Dice results of all classifiers, calculated over all
cross-validation models in order to avoid single-subject
dataset bias. All classifiers exhibited good performance on
these experimental data, with Dice >0.9 for all tissue types.
The Gradient-Boosting based classifier displayed the best per-
formance between the tested models. Comparison of the dif-
ferent classifiers’ performance is shown in Fig. S6, and
multiple examples of the Gradient-Boosting classifier perfor-
mance are shown in Fig. 2 and Fig. S7.

Spatial Registration

REGISTRATION OF THE EXPERIMENTAL DATA. Despite
the relatively low resolution of our experimental data, our
method yielded anatomically valid registered tissue maps as
shown in Fig. 3, which presents these maps on a 0.5 mm
MNI T1w scan.

Figure 4 and Table 2 present the voxel-wise and aver-
aged standard deviation from the common space in each reg-
istration method (ours, FSL, SPM, and DIPY) for FA and
MD images. Our method provided the least average deviation
(P < 0.05) from the common space and showed the
smoothest SD maps, reflecting no anatomical areas sensitive
to registration error. Of note is the improvement in registra-
tion over the original DIPY registration process on which our
proof of concept is based—especially in MD images, where
the average deviation is reduced by 28%.

The registration process will ideally display no anatomi-
cal deviation from the common space due to misalignment,
but only differences in FA and MD that arise from inter-
subject differences in brain microstructure. Therefore, a suc-
cessful registration would show minimal anatomical outlines
in these SD maps, since high values of SD along certain ana-
tomical regions indicate a difficulty in registering them
between all participants. Figure 4 displays such difficulty in
registering the corpus callosum in all other tested methods, as
well as some difficulty in defining the brain borders in FSL
and SPM.

Our method provided the highest NCC scores in both
FA and MD images relative to DIPY, FSL, and SPM
(P < 0.05), reflecting better alignment of the registered scans
to the common space (Fig. S9 and Table SIV).

The Dice scores for the registered maps created by our
classifier and other registration methods are shown in Fig. 5
and Table 3. The matrices in Fig. 5 are arranged such that
the first scans of all participants appear first, followed by the
second scans in the same participants’ order. This is reflected
by strong sub-diagonals in the matrices, indicating that each
post-registration map is most similar to the second map from
the same participant. Our method provided the highest Dice
score for both intra- and intersubject registration (P < 0.05),
with the respective average Dice scores being 0.957 and
0.897 for GM, and 0.940 and 0.855 for WM. Of note is the

TABLE 1. Tissue Segmentation Dice Scores of the
Experimental Data

Classifier GM WM CSF Overall

LR 0.9034 0.9423 0.9164 0.9213

RF 0.9011 0.9437 0.9097 0.9186

GB 0.9084 0.9473 0.9162 0.9245
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FIGURE 2: Results of the gradient-boosting based classifier on experimental diffusion MRI data. Segmentation results in four
participants (i–iv) are presented as RGB probability maps and separated into different tissue types (representing probabilities as
well): GM, WM, and CSF.

FIGURE 3: Tissue registration into MNI space. Sample probability maps for one subject, registered to MNI space, and separated to
GM, WM, and CSF. Although registration was performed to MNI 2 mm atlas, the results here are displayed on 0.5 mm atlas to show
similarity to brain structures.
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improved WM registration using our method compared to
FSL, considering that BBR relies on WM-based registration
of the DWI scan to T1w native space.

Finally, the DTI-based multivariate approach improved
registration performance relative to the univariate method in
several areas, most noticeable in the corpus callosum

(Fig. S11). However, it created additional misalignments in
other parts of the brain, likely due to low contrast presenta-
tion in the eigenvalues’ parameter maps. Table SVII shows
that the multivariate method achieved an overall better per-
formance over the univariate one—while still being inferior
to our proposed method.

FIGURE 4: Comparison between different registration methods using deviation of the registered images from the common MNI
space. The figure presents the voxel-wise standard deviation (SD) of registered images vs. common space estimated across
32 participants. Average SD values for FA and MD maps are shown in Table 2. The proposed method outperforms DIPY, FSL, and
SPM procedures (P < 0.05). Arrows indicate areas of mis-registration.

TABLE 2. Comparison Between Different Registration Methods: Average Standard Deviation from the Common
Space

Scan Our Method DIPY FSL SPM

FA [A.U.] � 102 6.79 7.52 10.18 10.45

MD [mm2/s] � 104 1.96 2.73 3.84 3.82

FIGURE 5: Comparison between different registration methods using similarities between the registered segmentation maps. The
figure shows pairwise Dice indices of all participants’ segmentation maps after registration using our method, DIPY, FSL, and SPM,
for GM (top) and WM (bottom). Each matrix contains two consecutive scans per participants. The proposed method outperforms the
other procedures in both intra- and intersubject correlation (P < 0.05).
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REGISTRATION OF THE HCP DATA. Both our method and
DIPY (chosen as the lead method from previous tests) per-
formed better on HCP scans than on our legacy data. How-
ever, the proposed method performed significantly better
than DIPY on the HCP data (P < 0.05;Fig. S12 and
Table SVIII).

Discussion
This study presents a novel method of tissue probability-
based registration, in which diffusion MRI scans are regis-
tered according to data-driven probability maps rather than
the original scans’ intensity values. The proposed method is
grounded on two premises. The first premise is the ability to
segment brain tissues based on DTI parameters derived from
dMRI scans. As the diffusivity of water molecules differs
between tissue types, diffusion profiles may form a valid basis
for an accurate tissue segmentation method. While each DTI
parameter is partially susceptible to differences between brain
tissues, multiple parameters are needed to achieve complete
segmentation of the brain. The second premise is that a uni-
variate registration cannot be optimal for dMRI images, as a
single contrast does not contain enough information to accu-
rately describe the entire brain. Basing the registration process
on a single contrast will yield a good fit for the visible por-
tions of the brain in that contrast, but is likely to overlook
other areas in the process, leading to a deformed result. Our
proposed method makes use of multiple DTI indices to create
three tissue probability maps. Using these TPMs (i.e., GM,
WM, and CSF) as the basis for registration not only provides
more comprehensive information about the brain due to its
multivariate nature, but also enacts a strong biological con-
straint on the registration procedure, allowing a better match
of the overall process. This approach is similar to the proce-
dure presented in Reference 27 for T1w scans, but is now
applicable to dMRI scans as well. While other multimodal
methods for dMRI registration may rely on the diffusion
parameters themselves, here we “translate” the diffusion data
into meaningful structural information in the form of TPMs,
thus making it possible to directly align diffusion and struc-
tural images.

The proposed method was implemented in a fully auto-
mated pipeline for both tissue segmentation of dMRI scans
and their registration to the common MNI space. This pipe-
line consists of a DTI-based tissue classifier, and a DIPY-
based multivariate registration process. The registration to the
MNI space was achieved by the use of a-priori existing proba-
bility maps of the MNI standard space. We showed that this
proposed pipeline outperformed existing registration methods,
supporting the idea that considering all brain tissues during
the registration process, rather than white matter alone, not
only improves results in the previously disregarded tissues
(e.g., GM structures), but also in the WM. Furthermore, the
relative success of our method in the registration of
the brain’s outer borders (especially the separation of the cor-
tex from the subarachnoid space) compared to SPM and FSL
unimodal methods reflects the higher accuracy of GM and
CSF separation. As most existing methods rely on WM-based
registration, our method may be more suitable for studies
focusing on gray matter microstructure.20,22

Limitations
The proposed registration process depends on the existence of
TPMs for both the registered and target (e.g., MNI) scans, or
the ability to accurately calculate such probability maps via an
external classifier. In the second case, the quality of the regis-
tration is directly proportional to that of the tissue classifier.
Here, we have demonstrated the proposed registration process
using pre-existing MNI TPMs and a tissue classifier for diffu-
sion MRI scans. Applying the process for other types of scans
or different registration targets will require modifications to
the existing pipeline. Nevertheless, high-quality TPMs in
standard space are publicly available, and multiple methods
for tissue segmentation exist, so such modifications should
not necessarily be complex. As the TPMs themselves are
modality-invariant, our method is applicable regardless of the
original data modality (e.g., TPMs computed from T1w
images can be registered to TPMs computed from diffusion
images).

The tissue-classifier was trained on a manually labeled
dataset. Such training dataset requires time and resources
from expert neuroanatomist; heavily depends on the labelers’

TABLE 3. Comparison Between Different Registration Methods: Average Dice Scores Between Registered
Segmentation Maps

Tissue Map Dice Score Our Method DIPY FSL SPM

GM Intra-subject 0.9568 0.9026 0.9164 0.8791

Intersubject 0.8967 0.7975 0.8111 0.7585

WM Intra-subject 0.9395 0.8184 0.8750 0.7785

Intersubject 0.8553 0.6507 0.7070 0.5639
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level of expertise; and lacks inter-labeler correlations. Future
studies may aim to increase the size of the training-set in
terms of the number of labeled participants, the number of
voxels labeled for each, the number of labelers, and an assess-
ment of the inter-labeler variance.

As both the training dataset and target TPMs used in
this study had spatial resolution of about 2 mm3 (specifically,
2 mm3 for the TPMs and 1.58 � 1.58 � 2.1 mm for the dif-
fusion images), registration of higher-resolution scans will
require more accurate classifiers. Although all trained classi-
fiers in this study achieved high scores on the labeled dataset,
they all featured a prominent disadvantage of visible bias
toward GM classifications (labeling anatomically known, but
unlabeled, non-GM areas as GM). This is especially promi-
nent in the GM-CSF borders, where all classifiers favored
labeling such voxels as GM. A possible cause for this bias is
the existence of partial volume errors in the low-resolution
scans, and thus using higher-resolution scans may be expected
to resolve such biases. This problem may also arise from the
nature of the manual labels used as the training dataset for
the classifier: the neuroanatomists were instructed to extract
segments of tissue-specific areas in the brain, rather than to
focus on the ‘difficult’ regions and tissue borders. Increasing
the size of the manually-labeled dataset, as well as labeling ill-
defined voxels, may assist in reducing partial volume biases.
Importantly though, the fact that registration was successful
even when using a previously acquired, clinical dataset rather
than a state-of-the-art one (e.g., the HCP database31) high-
lights the potential applicability of our method for regular
datasets that do not meet the HCP standard.

Notably, the current method treats all tissue types
equally. For studies focusing on gray matter areas of the
brain, a possible improvement of the procedure would be
adding a weighting factor to the registration cost function,
e.g., greater penalizing of errors in the GM than WM
and CSF.

Conclusion
A two-stage approach for dMRI registration based on tissue
probability maps has been demonstrated on human partici-
pants, outperforming other widely-used registration methods.
Furthermore, the probabilistic nature of our registration
process—ultimately independent of the diffusion
parameters—makes it highly compatible with other registra-
tion pipelines, regardless of scan resolution or study goals.
We thus provide a promising method for diffusion MRI reg-
istration, which considers all tissue types and provides an
accurate, anatomically-valid registration.
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