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A B S T R A C T   

Purpose: MRI’s T2 relaxation time is one of the key contrast mechanisms for clinical diagnosis and prognosis of 
pathologies. Mapping this relaxation time, however, involves extensive scan times, which are needed to collect 
quantitative data, thereby impeding its integration into clinical routine. This study employs a low-rank plus 
sparse (L þ S) signal decomposition approach in order to reconstruct accurate T2-maps from highly under
sampled multi-echo spin-echo (MESE) MRI data. 
Methods: Two new algorithms are presented: the first uses standard L + S approach, where both L and S are 
iteratively updated. The second technique, dubbed SPArse and fixed RanK (SPARK), uses a fixed-rank L, under 
the assumption that most MESE information is found in the L component and that this rank can be pre-calculated. 
The utility of these new techniques is demonstrated on in vivo brain and calf data at x2 to x6 acceleration factors. 
Results: Accelerated T2 maps showed improved accuracy compared to fully sampled ground truth maps, when 
using L + S and SPARK techniques vis-à-vis standard GRAPPA acceleration. 
Conclusion: SPARK provides accurate T2 maps with increased robustness to the selection of reconstruction pa
rameters making it suitable to a wide range of applications and facilitating the use of quantitative T2 information 
in clinical settings.   

1. Introduction 

MRI’s transverse (T2) relaxation time is one of the most highly uti
lized contrast mechanisms for noninvasive diagnosis and prognosis of 
pathologies. Radiologic interpretation of T2-weighted images is typically 
done in a visually qualitative manner [1–3], which may lead to protocol- 
and observer-dependent interpretation and preventing standardized 
diagnosis. Quantitative T2 mapping (qT2) is showing increased clinical 
merit including the detection and characterization of carcinoma and 
prostate lesions [4,5], assessment of musculoskeletal pathologies [6–9], 
diagnosis of ischemic stroke [10], evaluation of cognitive impairment in 
neurodegenerative diseases [11], and the assessment of acute coronary 
syndrome and myocardial edema [12,13]. 

Notwithstanding the popularity of quantitative MRI, qT2 is still not 
being routinely used in clinical settings due to the challenges of reliably 

quantifying this relaxation time. These include the extensive scan times 
associated with single spin-echo acquisitions [1,14], and the contami
nation of rapid multi echo spin echo (MESE) protocols by stimulated and 
indirect echoes [1,15]. Simplistic exponential fitting of MESE data re
sults in significant overestimation of T2 values [16,17] – a bias which is, 
moreover, not constant and depends on the scanner and scan setting 
being used [1,14,16,17]. 

Several techniques have been developed to improve the accuracy of 
T2 mapping while maintaining a reasonable acquisition times. Schmitt et 
al used Inversion Recovery TrueFISP to calculate T1, T2 and proton 
density (PD) from a single temporal signal [18], while DESPOT2 can 
estimate T2 values in clinically acceptable scan times from only two 
images acquired with different flip angles and a constant TR [19]. Both 
IR-TrueFISP and DESPOT2 are based on steady state free precession 
(SSFP) acquisition schemes, which exhibit sensitivity to main field (B0) 
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inhomogeneities and reduced T2 encoding quality vs. spin-echo based 
protocols [15]. The Extended Phase Graph (EPG) algorithm was devel
oped particularly for MESE protocols aiming to track all the coherence 
pathways that contribute to each echo [20], while also accounting for 
imperfect slice profile [15]. Another quantitative technique is magnetic 
resonance fingerprinting, used for mapping multiple parameters 
including T1, T2, and PD. This technique uses a pseudorandomized 
acquisition to generate a signal fingerprint, followed by fitting of all the 
parameters encoded in the signal by matching it to a precalculated 
dictionary of theoretical signal curves [21]. 

This study uses the echo modulation curve (EMC) technique [22], 
which is part of the family of dictionary matching approaches. This 
technique relies on full Bloch simulations of the MESE pulse sequence, to 
provide accurate and reproducible qT2 values, while paying particular 
attention to signal variations across different scan settings. By tailoring 
the fitting process to the specific RF and gradient pulses in the protocol 
timing diagram, the EMC technique is able to produce values that 
remain stable across scanners and scan settings [1,11,23]. Previous re
ports have shown the advantage of Bloch-based fitting approach vs. EPG 
based mapping for extracting reliable qT2 values at clinical time scales 
[16,24,25]. 

Notwithstanding the accuracy of the EMC technique, MESE acqui
sitions are still relatively long compared to simple T2-weighted protocols 
such as FLAIR, with typical scan times ranging around 6–11 min for full 
brain coverage using standard x2 acceleration. Further acceleration is 
therefore needed in order to use qT2 in clinical routine. This can be 
achieved by further undersampling the phase encoded dimension of the 
images’ k-space, together with designated data-reconstruction tech
niques like SENSE or GRAPPA [26,27]. These exploit the correlations 
between multicoil data to remove undersampling related aliasing and 
reach clinically feasible scan times within moderate acceleration factors 
(typically R = 2). The framework of compressed sensing (CS) has further 
potential for accelerating data acquisition [28,29]. According to CS 
theory, fully sampled data can be recovered from randomly under
sampled subset of k-space lines by relying on the fact that the data is 
sparse in some domain [29]. Global and Local Low Rank models have 
been previously proposed for model-free reconstruction of dynamic MRI 
data and for model-free rapid T2 mapping [30,31]. These methods 
exploit the strong correlations of the data in the temporal domain, re
flected as a low rank property, and are helpful in cases where an analytic 
signal model cannot be applied for reconstruction. Zhao et al. enforced 
low-rankness by setting a fixed and low rank for the data using factor
ization of two low-rank matrices in addition to a finite difference 
constraint along the spatial and temporal domains in order to reduce 
aliasing-related noise artifacts [32]. Still, all the above techniques rely 
on a theoretical exponential signal model, and do not account for the 
empiric distortions of MESE signals due to stimulated echoes. 

An alternative approach to exploit low-rankness is the Low Rank +
Sparse (L þ S) decomposition, which was recently proposed for accel
erating dynamic MRI applications [33]. This approach models the ac
quired data as the superposition of a low rank component (L) and a 
sparse component (S), thereby improving the performance of classical 
principal component analysis (PCA). The temporally correlated back
ground is modeled in L, while the dynamic information is modeled by S 
and superimposed on the background. Using L + S decomposition for 
dynamic MRI data showed superior compressibility compared to the use 
of only sparse or only low-rank models [33]. A variant on L + S was 
presented by Weizman et al., where the rank of the reconstructed L 
component was constrained to a predefined value that is meaningful 
with respect to the underlying data, and the reconstructed S component 
was constrained to be periodic or sparse in the Fourier Transform (FT) 
domain [34]. 

This study presents two variants of L + S based algorithms, designed 
to reconstruct T2 relaxation maps from highly undersampled data. The 
first uses the standard L + S approach, where both L and S are iteratively 
updated. The second, which is called SPArse and fixed RanK (SPARK), 

uses a fixed-rank L determined by the EMC signal model [1]. The pair of 
new reconstruction techniques was applied on brain and calf data, 
allowing the ability to reach high acceleration factors with negligible 
compromise on the T2 mapping accuracy. 

2. Theory 

The EMC technique models MESE T2 decay curves using Bloch sim
ulations that are tailored to the specific pulse sequence being employed. 
Specifically, the simulations incorporate the exact RF pulse shapes, 
gradient waveforms, and timing diagram to generate a theoretical EMC 
curve for each set of experimental parameters. Simulations are then 
repeated for a range of T2 and transmit field (B1

+) inhomogeneity values, 
ultimately generating a dictionary of EMCs, each associated with a 
unique [B1

+,T2] pair. The dictionary is generated once as a preprocessing 
step, while the T2 maps are constructed by matching the experimental 
decay curve at each voxel to the set of simulated EMC curves and finding 
the curve with the minimal l2-norm difference, yielding a single [B1

+,T2] 
pair per voxel [1]. 

The L + S matrix decomposition is an effective tool for foreground / 
background separation. The reconstruction of a time-series of under
sampled k-space data is given by the following optimization problem: 

L̂, Ŝ =
1
2
‖y − E(X) ‖2

2 + λL‖L‖* + λS‖TS‖1 s.t.X = L+ S (1) 

Here, y ∈ ℂNkxNkyNechoesNcoils denotes the vectorized multicoil k-space 
data; E = UFC is the accelerated acquisition operator with under
sampling pattern U, 2D-Fourier transform F and coil sensitivity C; X = L 
+ S ∈ ℝNxNy×Nechoes is the decomposition of the underlying anatomy into a 
low-rank component L and sparse component S under the transform 
domain TS. The reconstructed data X is arranged so that its nth column is 
a vectorization of the image from the nth echo (n = 1, …,Nechoes). Two 
regularization terms are introduced to enforce the low rankness of L and 
the sparsity of S. The first is the nuclear norm of L, denoted by ‖L‖*, and 
defined as the sum of its singular values, ‖L‖* =

∑
i=1
min(NxNy,Nechoes)σi. The 

second regularization term is ‖TS‖1 which ensures the sparsity of S. The 
transformation T can be tailored to the specific application at hand, e.g., 
FT for temporally periodic cardiac MRI data [33]. The regularization 
weights λL and λS adjust the tradeoff between data consistency and the 
above two priors. Further details about the encoding operator E are 
found in Appendix A. 

Unlike perfusion or cardiac cine data, where signal variations are 
localized to a certain time window or spatial region [33], MESE signals 
are dominated by a low-rank relaxation pattern [31], namely, a tem
poral decay curve which behaves relatively similar across the entire 
anatomy, with relatively small variations between the signals belonging 
to different T2 values. These observations imply that most of the relax
ation data in MESE signals is stored in the L component, while the S 
component carries natural inter-scan signal variations related to thermal 
noise and undersampling-related artifacts. 

Analysis of a typical EMC dictionary shows that accurate T2 maps can 
be achieved using only a small number of singular vectors from the SVD 
decomposition of the EMC dictionary (Fig. S1). Practical limitations like 
noise, motion, coil sensitivities, and others may add incoherent noise, 
increasing the rank of the acquired signal above the theoretical value 
expected from a dictionary of EMC curves. Another property of experi
mental MESE signal decay curves (EMCs) is that they exhibit no periodic 
component [34]. We thus employed the identity operator I as the 
sparsifying transform of S to reduce the influence of aliasing and noise, 
rather than a temporal FT (which was previously used to analyze cardiac 
data), assuming S is already sparse in the image domain. Based on these 
observations, we can formulate a new optimization problem named 
SPARK, which extends the L + S method by constraining the low-rank to 
a value [34] and using the identity transform instead of FT: 
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L̂, Ŝ =
1
2
‖y − E(X) ‖2

2 + λS ‖S‖1 s.t.X = L+ S, rank(L) = r (2) 

The SPARK algorithm is delineated in Algorithm 1 and is solved in a 
three-step iterative process. First, initial solutions X0 and S0 are chosen. 
At each iteration, Lk is estimated using the Iterative Hard Thresholding 
algorithm [34,35], consisting of Singular Value Soft Thresholding (SVT) 
with parameter λL • σr+1 and followed by truncating the rank to a fixed 
value r. Then, Sk is estimated by soft thresholding with weight λS. The 
soft thresholding operator is given by Λλ: 

Λλ(x) =
x
|x|

• max(0, |x| − λ ) (3) 

Finally, data consistency is applied in a gradient descent step with 
step size t. The algorithm repeats until a maximum number of iterations 
is performed or until the relative change in the solution is smaller than ε 
[33]. A constant value of t = 1 can be used given the spectral norm of E, 
defined by its largest singular value, which is <1. This is achieved by 
dividing the elements of F by 

̅̅̅̅̅̅̅̅̅̅̅
NxNy

√
and coil profiles C by their 

maximum magnitude [33]. Once fully sampled images are recon
structed, the EMC algorithm is used to generate quantitative T2 maps 
[1]. 

Algorithm 1 

1. Ini�alize: =0 = 0, =0 = =0 = ( )

2. Iterate for = 1,… , or un�l ‖ + −( −1+ −1)‖2

‖ −1+ −1‖2
≤

2.1 L-Step

= ( −1 − ( ( −1 + −1) − ))

̂ = { ∙ +1
( ) ≤ 0, >

= ̂

2.2 S-Step

= ( −1 − ( ( −1 + −1) − ))

2.3 Data consistency step

= + − ( ( + ) − )

Mul�coil undersampled k-t data.
Space-�me mul�coil encoding operator.

, The sparse and low-rank components es�mated at the kth

itera�on. 
The underlying image es�mated at the kth itera�on.

SVD Singular Value Decomposi�on.
So�-thresholding operator with parameter .
Gradient-step size in the gradient descent itera�on.

Stop condi�on is set by the maximum allowed number of 
itera�ons and tolerance .

3. Methods 

3.1. MRI scans 

MRI scans of the brains (N = 3) and calf (N = 1) of four healthy 
volunteers were performed on a human 3 T Siemens Magnetom Prisma 
scanner (Siemens Healthineers). All scans were approved by the local 
institutional review board and after obtaining written informed consent. 
Experimental protocols involved a standard MESE scan [TR/TE = 3000/ 
10 ms, slice thickness = 3 mm, NEchoes = 20, acquisition bandwidth =
200 Hz/Px]. Brain scans used a 16-channel receiver coil, pixel size = 1.1 
× 1.1 mm2, and matrix size = 192 × 150. Calf scans used a flexible 4- 
channel receive coil and 4 additional coils embedded in the scanner 
bed, with pixel size = 1.3 × 1.3 mm2, and matrix size = 128 × 84. 

3.2. Validation of L + S reconstruction models and identification of the 
fixed-rank parameter r 

In order to validate the low-rank and sparse model of accelerated 
MESE data, we show that accurate qT2 maps can still be generated from 
a low-rank version of the simulated EMC dictionary. T2 and B1

+ maps of 
scanned anatomy were generated by fitting the fully sampled data X 
against an SVD truncated versions of the EMC dictionary using a grad
ually decreasing number of singular values. Truncation was performed 
separately for each value of B1

+, and maps were generated using the EMC 
algorithm for each level of truncation. These T2 maps were then 
compared against the ground truth map generated from the full-rank 
EMC dictionary by calculating the mean and standard deviation (SD) 
of their relative errors (RE) according to 

RE = 100 •
T2,ref − T̂2

Tref
(4) 

Here, T̂2 is the T2 value of voxels in the estimated map, and T2, ref is 
the T2 value of voxels in the ground truth reference map. Finally, a fixed- 
rank r was chosen for SPARK reconstructions, equal to the minimal r 
value that showed no significant improvement in the SD of the relative 
error. 

3.3. Data undersampling 

Data were retrospectively undersampled at factors of R = 2 to 6. 
Pseudorandom non-uniform undersampling schemes were designed and 
applied along the phase encoding direction [28]. Different variable- 
density undersampling masks were used for each echo-time in the 
MESE series of images to produce an incoherent sampling patterns. Each 
mask was randomly generated using a power law probability density 
function (PDF) with parameter p = 6, as described by Lustig [28] and 
Knoll [36]. Such PDF reflects the power density spread in k-space, fa
voring high energy central lines over the k-space periphery. 

Monte Carlo simulations were carried out to generate 600 different 
undersampling masks for each echo in the MESE echo-train, followed by 
selecting the optimal mask, i.e., the one which minimized the side-lobe 
to peak ratio (SPR) [28]. Calculation of the SPR was performed using the 
Point Spread Function (PSF) of the multicoil encoding operator E, as 
described in the SENSE algorithm [28,33,37]. We note that the design of 
undersampling masks necessitates the use of the coil sensitivity (B1

− ) 
maps. Since coil profiles are relatively similar for each specific anatomy, 
we calculated the undersampling masks only once per coil configuration 
and anatomy. Coil profiles were estimated from the fully sampled k- 
space data as a preprocessing stage by applying the adaptive coil 
combine algorithm by Walsh et al. [38] and dividing each profile by its 
maximum absolute value. Elaborate description for the derivation of the 
PSF and SPR used in this work is provided in Appendix B. 

3.4. Image reconstruction 

Fully sampled images were reconstructed using standard inverse-FT 
and adaptive coil combination. Retrospective undersampling of the k- 
space data was applied using the precalculated ETL set of masks, sorted 
by increasing SPR. Undersampled data were then reconstructed using 
two techniques: standard L + S (Eq. (1)), and the SPARK algorithm (Eq. 
(2) and Algorithm 1). In both cases, coil sensitivity profiles were 
calculated from 24 central fully sampled k-space lines, apodised with a 
Hann window of length 26. The coil profiles were divided by their 
maximum absolute value and a constant step size t = 1 was used. The 
magnitude of the k-space data was pre-normalized to a range [0,1] prior 
to the retrospective undersampling to enable choosing λL and λS from a 
constant dynamic range. The values of these weights were thus opti
mized using grid search over 20 possible values each, in the range 10− 6 

to 1. This optimization was performed by evaluation of the mean and SD 
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of the relative error with respect to the ground truth qT2 map according 
to Eq. (4). Once λL and λS were determined, the undersampling scheme 
was once again optimized by examining 100 permutations of the 
undersampling patterns across the different echo times, applying the 
same optimization criterion. For SPARK reconstruction, a fixed rank 
value was set to r = 7 after inspecting the SVD of the EMC dictionary. 

3.5. Generation of qT2 maps – the EMC algorithm 

T2 maps were generated using the EMC algorithm once based on the 
fully sampled (ground truth) data, and once from the undersampled k- 
space data after applying the L + S, SPARK and GRAPPA re
constructions. EMC dictionary was generated for 21 equispaced B1

+

values between 80% and 120% to incorporate inhomogeneities of the B1
+

field, and 305 T2 values logarithmically spaced between 5 and 1200 ms. 
Comprehensive description of the EMC fitting procedure can be found in 
[22]. 

3.6. Evaluating qT2 mapping accuracy 

Accuracy of qT2 maps was estimated for all investigated anatomies. 
In brain scans, skull stripping was applied to exclude errors in the skull 
and sinuses areas [39]. Calf data were automatically segmented to 
remove the subcutaneous fat, skin, and bone marrow using a convolu
tional neural-network based segmentation [40,41]. Additional erosion 
of 1 voxel was subsequently applied to avoid partial volume effects. 
Regions of interest (ROIs) were manually delineated within each anat
omy in order to evaluate the relative error in specific areas as shown in 
Fig. 1. For brain images, the head of caudate nucleus, putamen, thal
amus, and splenium of corpus callosum were segmented. For calf im
ages, the gastrocnemius, soleus, flexor longus, tibialis anterior, and 
peroneus longus muscles were segmented. 

Relative errors were calculated per voxel by comparing the qT2 
maps, generated from the undersampled data, to the fully sampled 
(ground truth) qT2 maps, according to Eq. (4). The mean and SD of the 
RE (MRE and SDRE relatively) were then calculated for each ROI. While 
T2 values smaller than a single TE are too short to be estimated, T2 values 
>180 ms are well above brain tissue values (excluding CSF), as well as 
muscle, fat, and bone marrow tissues in the calf. Pixels with T2 < TE or 
180 > T2 ms in the fully sampled ground truth data were thus masked 
out and excluded from the error estimation. 

4. Results 

Brain T2 maps generated by fitting to an SVD truncated EMC dic
tionary using only the 4 largest singular values, with MRE and SDRE of 
0.03% and 0.26% respectively. For the calf we found that using 6 sin
gular values reduced the MRE and SDRE to 0.001% and 0.54% only. 
Assuming the experimental signals may require some higher rank to be 
well represented, we thus chose r = 7 to represent the EMC dictionary in 
the subsequent SPARK reconstruction of both anatomies. 

Plots of MRE and SDRE against the number of singular values used 
for reconstruction are given as supplementary results (Fig. S1). The 
undersampling patterns for brain and for calf data were designed 
separately for L + S and for SPARK, seeing as the best undersampling 
pattern for SPARK is not necessarily the same as for L + S. Under
sampling patterns for the brain data and SPARK reconstruction are 
shown in Fig. 2 for acceleration factors R = 2 to 6. 

The full set of reconstruction parameters used for brain and calf will 
be supplied by request for both L + S and SPARK. Of note, SPARK re
constructions of the brain and calf were performed using a constant λS =

0.1 and r = 7 for all acceleration factors, thereby reducing the 
complexity of the parameter selection process. 

T2 maps of the brain and calf for acceleration factors x2, x4 and x6 
are shown in Figs. 3-4. Image series were produced using three recon
struction techniques: GRAPPA, L + S and SPARK, with the final T2 fitting 
performed using the EMC algorithm for all three techniques. As can be 
appreciated, all three techniques produce reasonable T2 maps at stan
dard acceleration factor of 2. Undersampling related artifacts appear, 
however, for the GRAPPA reconstruction at R = 4, 6 (appearing already 
at R = 3). L + S and SPARK, on the other hand, retain diagnostic quality 
even for x6 acceleration, attesting to the superiority of these approaches 
for reconstructing undersampled relaxation data. 

Global error statistics are plotted against acceleration factor in Fig. 5 
and Fig. 6 for brain and calf, respectively. As can be seen, the low rank 
techniques provide highly accurate T2 maps with a close-to-zero mean 
error for almost all acceleration factors compared to GRAPPA whose 

Fig. 1. Segmented regions of interest (ROIs), used for the evaluation of T2 
mapping performance. (a) Brain ROIs: R1, head of caudate nucleus; R2, puta
men; R3, thalamus; R4, splenium of corpus callosum. (b) Calf ROIs: R1, 
gastrocnemius; R2, soleus; R3, flexor longus; R4, tibialis anterior; R5, peroneus 
longus muscle. 

Fig. 2. Optimal undersampling patterns used for brain datasets and SPARK 
reconstruction at acceleration factors R = x2…x6. Patterns were identified 
using Monte-Carlo simulations and an SPR criterion. Optimization process 
resulted in a different set of undersampling masks for L + S reconstruction 
(not shown). 
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accuracy decrease rapidly with R. SPARK and L + S brain qT2 maps were 
unbiased by the undersampling, with a maximal average bias of around 
1.8% and <0.6% for R < 5. The precision of these techniques is reflected 
in the error SD, which keeps a very moderate increase for L + S and 
SPARK, vs. GRAPPA. Similar results were obtained for the calf anatomy 
(Figs. 4 & 6), with a maximal bias below 1%. 

Region-specific error statistics are presented in Tables 1 and 2 for 
brain and for calf, respectively. SPARK provides slightly better accuracy 
(lower SD), compared to L + S for most assayed ROIs, while both 
methods outperform standard GRAPPA. 

5. Discussion 

This work presents two new techniques for accelerating MESE 
acquisition of T2 relaxation maps, with high undersampling of the k-t 
domain, and using the EMC fitting algorithm. Our findings suggest that 
acceleration can be successfully achieved using either the L + S or the 
SPARK algorithms. The EMC algorithm endows this mapping process 
with an additional layer of accuracy and stability by enabling the 
extraction of consistent values across scanners and scan settings [11,17]. 
Both L + S and SPARK require optimization of the reconstruction process 
in order to produce high T2 mapping accuracy. Owing to the use of 
retrospective undersampling we were able to faithfully estimate the T2 

mapping accuracy and optimize the reconstruction parameters thereby 
evading the problems of visual inspection and lack of ground truth. 

Looking beyond any similarity or discrepancy between the different 
low rank techniques, we emphasize that neither L + S [33] nor the PEAR 
technique (designed for accelerating fMRI acquisitions [34]) were pre
viously used to accelerate the acquisition of quantitative T2 relaxation 
maps. Thus, the novelty of SPARK lies in the way it incorporates the EMC 
signal model in the reconstruction process, both during pre- and post
processing stages. During preprocessing the EMC signal model is used to 
determine the MESE signal fixed rank, while during postprocessing the 
EMC qT2 mapping algorithm is used to generate accurate and stable T2 
maps from the reconstructed images. 

Common measures for evaluating the performance of image recon
struction techniques are the Root Mean Squared Error (RMSE), the 
normalized RMSE (nRMSE), and the Structural Similarity (SSIM). While 
SSIM is indicative of the perceived image quality, low values of RMSE 
and nRMSE may not necessarily indicate visual similarity. Despite the 
popularity of these error estimates, we found the MRE and SDRE more 
appropriate for the task of evaluation of qT2 quality, reflecting both the 
accuracy (bias) and precision (SD) of the estimated T2 values. Moreover, 
we consider the calculation of MRE and SDRE more appropriate than the 
calculation of the average magnitude of the relative error. While the 
averaging of errors with opposite sign cancels the average RE, their SD 

Fig. 3. Quantitative T2 maps of the brain, reconstructed using GRAPPA, L + S, and SPARK in combination with the EMC algorithm. All methods show similar qT2 
mapping quality at R = 2. GRAPPA reconstruction, however, exhibits visible artifacts from R = 4 and above, while L + S and SPARK retain clinically acceptable 
accuracy even at R = 6 with no noticeable bias or artifacts. Reference qT2 map was reconstructed from a fully sampled dataset. 
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Fig. 4. Quantitative T2 maps of the calf, reconstructed using GRAPPA, L + S, and SPARK in combination with the EMC algorithm. Bones and subcutaneous fat were 
automatically segmented out of the analyzed anatomy using a convolutional neural network [40,41]. All methods show similar reconstruction accuracy at R = 2. 
Maps reconstructed using GRAPPA show visible artifacts at R = 4 and above, while L + S and SPARK provide improved accuracy even at R = 6 with no noticeable 
bias or artifacts. Reference qT2 map was reconstructed from a fully sampled dataset. 

Fig. 5. Mean (a) and standard deviation (b) 
of the relative error in T2 maps of the whole 
brain, averaged across the three brain data
sets. Error levels were calculated across the 
brain soft tissue after skull stripping. Both L 
+ S and SPARK are nearly unbiased, with 
mean relative errors below 0.6% for all ac
celeration factors other than R = 5 which 
produced error ≤ 2%. SD of all three 
methods remain below 4% at R = 2,3, with 
SPARK and L + S exhibiting improved per
formance vis-à-vis GRAPPA at higher accel
eration factors. Vertical error bars denote 
inter-scan variability, calculated as the 
standard deviation between the three brain 
datasets, and exhibiting high inter-scan 
repeatability.   

G. Daniel et al.                                                                                                                                                                                                                                  



Magnetic Resonance Imaging 98 (2023) 66–75

72

would increase due to their signs. In contrary, averaging the magnitude 
of the RE would not supply information about any bias in the estimated 
values. 

Though phantoms are commonly used to validate the accuracy of T2 
values, in this work we relied on the validity and accuracy of the EMC 
algorithm [1]. Hence, model validations used retrospective under
sampling, while using the T2 maps generated from fully sampled data as 
ground truth. Employing prospective undersampling will require the 
collection of three separate datasets, acquired during three separate 
scans, seeing as each reconstructed technique has its own optimal 
undersampling scheme. This would have introduced an inter-scan 
variability, which would contaminate the comparison against a fully 
sampled reference scan. Retrospective undersampling, on the other 
hand, allowed us to accurately compare between methods, where 
different undersampling schemes and reconstruction methods are 
applied on the exact same dataset. Thus, any variability between T2 
maps was attributed to the difference between reconstruction models 

alone, without natural inter scan variability due to motion or noise. 
Further validations are required using prospective undersampling, 
although such acquisitions are expected to produce even higher map
ping accuracy, as they will be less susceptible to motion artifacts due to 
their shorter acquisition times. 

The standard approach for designing undersampling masks for L + S 
is based on the selection of ETL different patterns, randomly under
sampling the phase-encoding dimension. These patterns are designed so 
as to maximize the incoherence between undersampling-related aliasing 
artifacts [28,33]. Although undersampling techniques tailored for L + S 
reconstructions were not found in the literature during this work, many 
similar techniques were previously developed for CS-MRI. Most of these 

Fig. 6. Mean (a) and standard deviation (b) of the relative error in T2 maps of the calf. Error values were calculated across the calf muscles, excluding the sub
cutaneous fat and the bones. Both L + S and SPARK are nearly unbiased, with mean relative errors below 1% for all acceleration factors. Precision (SD) of L + S and 
SPARK remain below 5.6% at R = 2, 3, and outperform GRAPPA at all acceleration factors. 

Table 1 
T2 mapping accuracy (MRE) and precision (SDRE) for specific regions of interest 
in the brain, averaged across the three brain datasets [PU- putamen, HCN- head 
of caudate nucleus, TH- thalamus, SP- splenium].  

ROI Acceler. 
Factor → 

x2 x3 x4 x5 x6 

HCN 

GRAPPA − 0.1 ±
2.0 

0.2 ±
4.2 

4.5 ±
12.5 

19.2 ±
39.1 

10.1 ±
49.2 

L + S − 0.3 ±
2.6 

− 0.1 ±
3.4 

− 0.1 ±
4.9 

2.6 ±
5.8 

1.1 ±
5.3 

SPARK 
− 0.3 ±
2.7 

− 0.7 ±
3.3 

− 0.9 ±
3.2 

− 1.3 ±
4.6 

0.4 ±
4.3 

PU 

GRAPPA 
− 0.2 ±
2.7 

0.5 ±
5.0 

4.0 ±
13.2 

16.9 ±
40.0 

10.7 ±
49.9 

L + S 0.0 ±
3.0 

0.7 ±
4.0 

− 0.7 ±
5.1 

2.2 ±
5.7 

0.2 ±
4.9 

SPARK 0.0 ±
2.7 

− 0.2 ±
3.8 

− 0.3 ±
3.5 

− 1.5 ±
4.4 

1.5 ±
5.6 

SP 

GRAPPA 
0.2 ±
2.5 

0.5 ±
4.4 

4.0 ±
12.0 

7.6 ±
31.3 

2.9 ±
41.7 

L + S 
− 0.3 ±
3.0 

− 0.1 ±
3.7 

− 1.1 ±
5.3 

4.7 ±
5.4 

− 1.0 ±
5.0 

SPARK − 0.3 ±
2.7 

− 0.6 ±
3.9 

− 2.2 ±
4.0 

− 2.2 ±
5.6 

− 0.2 ±
5.4 

TH 

GRAPPA 
0.0 ±
2.9 

0.9 ±
5.8 

5.4 ±
16.8 

6.7 ±
38.5 

3.3 ±
44.6 

L + S 
− 0.4 ±
3.4 

− 0.9 ±
4.6 

− 3.6 ±
4.8 

− 2.3 ±
6.1 

− 2.5 ±
5.0 

SPARK 
− 0.8 ±
3.4 

− 1.8 ±
4.9 

− 2.3 ±
4.4 

− 5.1 ±
4.9 

− 2.2 ±
5.8  

Table 2 
T2 mapping accuracy (MRE) and precision (SDRE) for specific regions of interest 
in the calf [GM- gastrocnemius muscle, SM- soleus muscle, FL- flexor longus, PL- 
peroneus longus, TA- tibialis anterior].  

ROI Acceler. 
Factor → 

x2 x3 x4 x5 x6 

GM 

GRAPPA 0.3 ±
3.4 

2.6 ±
10.2 

10.3 ±
28.3 

29.0 ±
58.1 

25.2 ±
69.8 

L + S 1.2 ±
2.9 

1.2 ±
3.7 

1.8 ±
5.0 

1.3 ±
6.7 

4.4 ±
8.4 

SPARK 
0.6 ±
2.8 

0.5 ±
4.1 

2.0 ±
4.0 

2.4 ±
5.4 

1.3 ±
6.7 

SM 

GRAPPA 
1.2 ±
5.8 

3.1 ±
12.5 

18.2 ±
40.6 

18.9 ±
44.0 

23.3 ±
74.2 

L + S 0.8 ±
4.0 

0.7 ±
5.4 

1.5 ±
6.6 

− 3.1 ±
8.2 

0.8 ±
8.4 

SPARK 0.5 ±
3.8 

− 0.6 ±
5.0 

0.8 ±
6.5 

2.2 ±
6.7 

− 1.4 ±
7.7 

FL 

GRAPPA 
0.7 ±
3.6 

5.1 ±
17.8 

10.2 ±
25.3 

19.4 ±
47.2 

20.3 ±
61.3 

L + S 
1.5 ±
2.5 

0.9 ±
3.8 

0.3 ±
5.3 

1.5 ±
6.4 

2.8 ±
8.4 

SPARK 0.8 ±
2.7 

0.8 ±
3.8 

− 0.3 ±
5.2 

− 1.0 ±
6.0 

− 1.5 ±
6.1 

PL 

GRAPPA 
0.6 ±
2.6 

8.1 ±
10.8 

18.4 ±
27.4 

31.2 ±
63.6 

22.2 ±
63.8 

L + S 
1.5 ±
2.8 

0.9 ±
4.0 

5.1 ±
7.1 

6.0 ±
9.6 

6.6 ±
11.0 

SPARK 
1.3 ±
2.6 

2.8 ±
3.4 

2.6 ±
4.8 

− 7.4 ±
5.2 

3.4 ±
7.7 

TA 

GRAPPA 0.2 ±
2.7 

0.9 ±
4.6 

2.5 ±
9.7 

8.5 ±
23.1 

2.6 ±
21.6 

L + S 
1.0 ±
2.9 

2.1 ±
3.2 

2.6 ±
4.7 

− 0.5 ±
6.9 

3.1 ±
7.5 

SPARK 
0.7 ±
2.4 

0.6 ±
4.1 

1.4 ±
4.5 

− 0.7 ±
5.7 

3.0 ±
4.7  
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works evaluate the undersampling schemes by assessing the quality of 
the reconstructed training data. Such evaluation approach requires prior 
knowledge regarding the regularization parameters values, which are 
not always known and depend on the undersampling scheme itself. 
Furthermore, a criterion for assessing the quality of the final image is 
also needed. Using the SPR criterion we avoided both problems since 
image reconstruction was not required. 

The PSF of the acquisition operator E, can be formulated as a block- 
diagonal square matrix, where each block is the PSF of the multi-coil 
acquisition of a single echo (see Appendices A and B). Theoretically, 
this makes the SPR of E insensitive to the order of the undersampling 
patterns. Consequently, the SPR will be the maximum amongst all 
echoes. Nonetheless, we found the temporal arrangement of under
sampling patterns to have a significant effect on the qT2 mapping per
formance, mainly at acceleration factors >3. 

The design of undersampling schemes based on the SPR criterion 
makes use of the coil sensitivities for the calculation of the PSF. 
Reconstruction of prospectively undersampled data might encounter 
some variability in the coil sensitivity profiles, resulting in different SPR 
values than the ones found during the scheme design. This, however, is 
not expected to become a limitation since the sampling patterns are 
designed per anatomy and coil configuration. The estimation of the coil 
sensitivities from few fully sampled central k-space lines is done as a 
preprocessing stage prior to image reconstruction. This approach as
sumes that most of the k-space data is concentrated in its low fre
quencies. The selection of such lines is thus similar to applying a 
rectangular low-pass filter. Such filters are characterized by relatively 
large side-lobes, which caused significant artifacts in the estimated coil 
sensitivity maps. Apodizing these central lines with a Hann window 
significantly reduced the side-lobes magnitude and resulting artifacts, 
thereby improving the T2 maps quality. 

Global optimization of reconstruction parameters for L + S and 
SPARK may be a difficult and probably intractable task. In this study, we 
adopted a greedy approach to solve this task, which, although time 
consuming, led to satisfactory results. Using grid search for the selection 
of λS and λL, we found that SPARK is more robust than L + S to different 
regularization values, resulting in a larger range of parameter values 
achieving optimal or near optimal T2 mapping performance and alle
viated the constraints on parameter selection. Our results show that 
using λS = 0.1 in SPARK at all acceleration factors and for both datasets 
yields similar results to those achieved using an exhaustive 2D grid 
search. 

Theoretical analysis of the EMC dictionary’s singular values showed 
that it can be well-approximated using a rank of r ≥ 4–5. From a prac
tical point of view, however, we assumed the experimental rank to be 
higher than the theoretical one due to noise and other imperfections. 
Hence, we set the rank at a fixed value of r = 7 for SPARK, which, in most 
cases, was enough to outperform L + S given a suitable pair of [λS, λL] 
values. Moreover, the undersampling schemes and reconstruction pa
rameters of the brain scans were based on a single dataset per anatomy 

and applied for the remaining datasets. These results attest to the 
robustness of the postprocessing approach across similar anatomies. 

Our results show that brain T2 maps have reduced SDRE compared to 
the calf maps. We found that large relative errors in brain T2 maps are 
prone to occur at the edges of our stripped skull, and simple erosion of 
the binary segmentation mask reduced the mean and SD of the RE 
(Fig. S2). Nonetheless, large relative errors in calf appear not only at 
partial volume voxels, but also in the center of the anatomy, and are 
related to blood circulation. 

L + S was originally applied as a method for acceleration of dynamic 
MRI based on foreground / background signal separation, where L 
contains mainly background data and S contains the signal of interest, 
which is sparse in some transform domain. Perfusion data, for example, 
used temporal FT as a sparse transform, while angiography data 
employed the Identity transform for S, representing sparsity in the image 
domain. Another example is the PEAR technique [34], in which the 
signal was modeled as composed of both periodic and wideband com
ponents, so that both L and S contain signals of interest. In SPARK, the 
low rank property of MESE signals, and the corresponding EMC dictio
nary of theoretical signals, enables modeling the signal of interest as L 
while using S to eliminate residual aliasing-related noise, which is sparse 
in the image domain. 

The main difference between SPARK and L + S lies in the SVT 
mechanism used for the solution of the L-step. Whereas L + S solves L by 
applying SVT on its singular values with parameter λL • σ1, SPARK ap
plies SVT with parameter λL • σr+1, followed by rank truncation to the 
fixed-rank r [34,35]. 

6. Conclusions 

This work presented the application of two new reconstruction 
techniques, L + S and SPARK, for accurate mapping of T2 relaxation 
values from accelerated MESE data. We show that the low or fixed rank 
and sparsity-based models provide sufficient accuracy at acceleration 
factors ≥3, significantly overperforming standard GRAPPA. SPARK ex
hibits small improvement over L + S in terms of T2 mapping accuracy, 
while demonstrating a significantly improved robustness to rank- 
selection and to regularization parameters’ values. This property may 
contribute to future application of SPARK, enabling the acquisition of 
highly accelerated MESE data and facilitating the use of quantitative T2 
in clinical settings. 
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Appendix A. Definition of the encoding operator (E) 

Let xi ∈ ℝNxNy be the column-stacked i-th echo in a MESE signal of ETL echoes, and let yi
(j) ∈ ℂNkxNky be the column-stacked k-space data acquired at 

the j-th coil from signal xi using the encoding operator Ei
(j) = UjFC(j) 

y(j)i = E(j)
i xi (A1) 

The coils sensitivity map C(j) ∈ ℂNxNy×NxNy is a complex diagonal matrix performing element-wise multiplication of voxels in xi, and the under
sampling pattern Ui ∈ ℝNkxNky×NkxNky is a diagonal matrix with 1’s at sampled k-space voxels and 0 elsewhere. F is the 2D FT matrix operating on the 
vectorized echo. 

The parallel acquisition of k-space in Ncoils at the i-th echo, yi ∈ ℂNkxNkyNcoils, is the concatenation of Eq. (A1) Ncoils times, acquired by Ei. Since same 
undersampling is performed for all coils during the same echo, yi = Eixi can be written as 
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yi =

⎡

⎢
⎢
⎣

Ui
Ui

⋱
Ui

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

F
F

⋱
F

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

C(1)

C(2)

⋮
C(Ncoils)

⎤

⎥
⎥
⎦ (A2) 

In the same way we derive the multi-echo sequence of parallel acquisitions y ∈ ℂNkxNkyNcoilsETL, acquired by E from signal x ∈ ℝNxNyETL, concatenating 
Eq. (A2) ETL times. Eq. A3 represents the acquired k-space of the multi-coil MESE signal, denoted as y = Ex. 
⎡

⎢
⎢
⎣

y1
y2
⋮

yETL

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

E1
E2

⋱
EETL

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2
⋮

xETL

⎤

⎥
⎥
⎦ (A3)  

Appendix B. Definition of PSF and SPR 

The point spread function (PSF) and side-lobe to peak ratio (SPR) of E are defined by 

PSFij = e*
j E*Eei (B1)  

SPR = max
i∕=j

PSFij (B2)  

where E is the encoding operator and ei ∈ ℝNxNyETL is equal to 1 at voxel i and 0 elsewhere. From Eq. (A3) in Appendix A we see that 

E*E =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E*
1E1

E*
2E2

⋱
E*

ETLEETL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(B3) 

From Eq. (B3) it is clear that E does not induce correlations between the echoes and the PSF of each echo can be calculated separately. Moreover, 
the SPR of E is the maximum off-diagonal absolute value in the PSF. Since E*E is block-diagonal, the SPR of E is the maximum SPR of all echoes. 

The value in the j-th voxel of the k-th echo is given by 

e*
kjE

*
k Ekeki = e*

kjF
*UkFeki

∑Ncoils

l=1
c(l)*j c(l)i (B4) 

From Eq. (B4) we can see that when coil sensitivity maps are not constant, they will influence the calculation of the SPR of E. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2023.01.007. 
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