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A B S T R A C T   

Background 
Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and 

follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time- 
consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simu-
lating theoretical signal curves for different physical and experimental values, followed by matching the 
experimentally acquired signals to the set simulated ones. 

Purpose 
Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive 

post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 
relaxation maps. 

Methods 
This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC- 

based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) 
and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB 
C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, 
produced by each technique. 

Results 
Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. 

PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching 
process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by 
choosing the optimal MATLAB C++ compiler. 

Conclusions 
Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the 

ensuing T2 values.   

1. Introduction 

MRI's transverse (T2) relaxation time is one of the most commonly 
used contrast mechanisms for diagnosis and prognosis of pathologies. 
This relaxation mechanism is most-commonly utilized in a qualitative 
manner, involving visual assessment of contrast-weighted images. 
Quantitative mapping of T2 relaxation times has also shown to be useful 
for the diagnosis of pathologies including neurodegenerative diseases 

[1–3] cancer [4–6], impaired hip and knee cartilage [7–12], imaging of 
stroke [13], assessment of diseased and post-transplant myocardial 
edema [14,15], and investigation of muscle physiology [16]. Quanti-
tative T2 mapping (qT2) offers several advantages. First, it provides the 
flexibility to generate any level of T2 contrast offline [17,18]. Second, 
qT2 offer higher sensitivity to subtle tissue changes, allowing to detect 
pathology in an otherwise normal-appearing tissues [3,19,20]. Third, 
and no less important, is the scalability of the measured values, which 
are stable across scanners and scan settings, and thus allow easier 
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longitudinal and multi-center studies [21]. 
Notwithstanding the proven utility of qT2, this technique is still 

underutilized due to the difficulties of reliably quantifying this relaxa-
tion time. These include the extensive scan times associated with single 
spin-echo (SSE) acquisitions [20–24] (ca. 1-h scan for clinically relevant 
spatial-resolutions), and the contamination of rapid multi-echo spin- 
echo (MESE) protocols by stimulated echoes (STEs) [21,25–27]. These 
lead to significant overestimation of T2 values when using a theoretical 
exponential fitting [25,28], a bias which is moreover not constant as it 
depends on the scanner and scan parameters being used [20,21,25,28]. 

Several approaches have been developed for accurate mapping of T2 
values at clinically-relevant scan times. One class of techniques relies on 
steady state free precession protocols such as inversion recovery True-
FISP [29] and DESPOT2 [30], to avoid contamination of MESE signals 
by STEs. These protocols are characterized by relatively short scan times 
on expense of higher sensitivity to main field (B0) inhomogeneities and 
reduced T2 encoding quality vs. spin-echo based protocols 
[25,29,31–33]. The Extended Phase Graph (EPG) algorithm is another 
useful technique, developed specifically for modeling MESE STEs by 
tracking all the coherence pathways along the MESE echo train, while 
also accounting for imperfect slice profiles [22,30,34–36]. Recently, 
extensive research has been done regarding the use of dictionary-based 
signal processing techniques such as magnetic resonance fingerprinting 
(MRF) [37], and the echo modulation curve (EMC) algorithm [25]. 
Previous reports have shown the superiority of Bloch-equation based 
fitting for mapping T2 values [22], as well as the accuracy and repro-
ducibility of the EMC technique across different scan settings 
[19,32–34,38]. This advantage can be attributed to the fact that 
methods like the EMC algorithm incorporate the specific protocol 
implementation and experimental parameter values into its recon-
struction process [3]. Notwithstanding their short scan times, these 
dictionary-based techniques involve intensive data post-processing 
procedures, as they require matching the experimental signal from 
each voxel to each dictionary element, in order to find the best fit be-
tween theoretical and experimental data. These exhaustive search pro-
cedures are often too time-consuming for realtime processing, thereby 
hindering the integration of such techniques in clinical settings. 

Several techniques have been proposed for accelerating the recon-
struction of MRF-based parameter mapping. These may be divided to 
two classes. The first altogether avoids the use dictionaries by relying on 
iterative data-driven parameter estimation (Kalman's filter [39]), on 
nonlinear regression models [40], or based on machine/deep-learning 
approaches [41–45]. These offer a twofold advantage of skipping the 
dictionary creation and fitting process – both of which involve compu-
tationally intensive procedures. The second class is based on acceler-
ating the dictionary matching process, either through dimensionality 
reduction of MRF data using singular value decomposition (SVD) [46], 
low-rank approximation [47], and compressed sensing [48,49]; using 
fast group matching procedures [50]; or using strong GPU-based 
computational power [51]. 

In this work we investigate two approaches for accelerating 
dictionary-based reconstruction of MESE data. The first approach is to 
reduce the dimensionality of the search space using dictionary 

compression based on principal component analysis (PCA) [52,53]; and 
the second approach improves the efficiency of the dictionary-matching 
procedure using a gradient descent (GD) search scheme. Improvement in 
reconstruction times are presented for each approach, demonstrated on 
in vivo brain and calf data. 

2. Material and methods 

2.1. MRI scans 

MRI scans were performed on a whole-body 3 Tesla MRI scanner 
(Prisma, Siemens Healthineers). Brain and calf scans of two healthy 
volunteers were performed under the approval of the ethics committee 
at Sheba Medical Center, Ramat Gan, Israel. Calf muscles of a 
genetically-confirmed dysferlinopathy patient were scanned at the 
Center for Magnetic Resonance in Biology and Medicine, Marseille, 
France. The patients' protocol was approved by the local ethics com-
mittee (Comité de Protection des Personnes Sud Méditerranée I). 

Experimental quantitative T2 data were acquired using a multi-echo 
spin-echo (MESE) protocol. Brain scans used a 24-channel receiver coil, 
and the following experimental parameters: TR/TE = 4072/15 ms, slice 
thickness = 3 mm, number of slices = 26, acquisition bandwidth = 200 
Hz/Px, NEchoes = 10, field-of-view = 220 × 206 mm2, matrix size = 128 
× 120. Healthy subjects' calf scans used a flexible 4-channel receive coil 
and 4 additional coils embedded in the scanner bed, with the following 
experimental parameters: TR/TE = 3000/10 ms, slice thickness = 4 mm, 
number of slices = 5, acquisition bandwidth = 200 Hz/Px, NEchoes = 25, 
field-of-view = 120 × 180 mm2, matrix size = 106 × 160. Patients' calf 
scan was performed on a 1.5 Tesla whole-body MR scanner (Siemens 
Healthineers), using the following experimental parameters: TR/TE =
2500/8.7 ms, slice thickness = 10 mm, number of slices = 5, acquisition 
bandwidth = 434 Hz/Px, NEchoes = 17, field-of-view = 192 × 192 mm2, 
matrix size = 128 × 128. 

2.2. Data pre-processing: generation of the EMC dictionary 

Quantitative T2 maps were generated using the EMC algorithm 
described in [25] and summarized in Appendix A. All procedures were 
programmed in-house using MATLAB (The MathWorks Inc., Natick, 
MA), and C++ code compiled to a MATLAB MEX file using the 
MinGW64 compiler. The EMC algorithm consists of an initial pre- 
processing stage, in which Bloch simulations of the prospective MESE 
protocol are performed using the exact RF pulse shapes and other 
experimental parameter-values used on the MRI scanner. This allows to 
simulate the actual MESE T2 decay curve and produce T2 values that are 
invariant to the particular choice of scanner and scan settings. Simula-
tions are repeated for a range of T2 relaxation values and transmit-field 
(B1

+) inhomogeneity levels (T2 = 1…1000 ms, B1
+ = 70…130%), 

producing dictionary of echo modulation curves (i.e., EMC's), each 
associated with a unique [T2,B1

+] pair. 

2.3. Data post-processing: generation of quantitative T2 relaxation maps 

Once experimental data is acquired, the signal time-series at each 
voxel is matched to the dictionary of simulated EMCs, by minimizing the 
l2-norm of the difference between experimental and simulated curves 
‖EMCexp − EMCsim‖2. Once a match is found, a unique T2 value associ-
ated with the matched EMC is assigned to the corresponding voxel. 
Repeating this process for all voxels, yields the desired parametric map. 
Next, proton density (PD) maps are calculated by extrapolating the 
image from the first echo time to time t = 0, based on the calculated T2 
map, under the assumption that purely exponential decay takes place 
between excitation and the first TE. This assumption is based on the fact 
that stimulated echoed affect MESE signals only from the second echo 
and on, while the first echo includes only spins that underwent perfect 
refocusing. 

Nomenclature 

MESE multi-echo-spin-echo 
SE spin-echo 
EMC echo-modulation-curve 
qT2 quantitative T2 
ETL echo train length 
ROI region of interest 
PD proton density  
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The above fitting process can be implemented using an exhaustive 
search over the set of NT2 × NB1+ dictionary entries (~10,000…20,000 
elements). Calculation of the l2-norm of each element also depends on 
the MESE echo train length (ETL), which eventually leads to extensive 
reconstruction times. To overcome this limitation, we investigated two 
different acceleration approaches: PCA compression of the EMC dictio-
nary and experimental data, and optimized traversal of the dictionary 
search space using a GD search scheme. 

2.4. Accelerated reconstruction using PCA compression 

SVD is a mathematical factorization method for real or complex 
matrices. Every matrix A ∈ Cn×m can be written using the SVD as: 

A = UΣV* (1)  

where U ∈ Cn×n and V ∈ Cm×m are real or complex unitary matrices, and 
Σ ∈ Rn×m is a diagonal matrix with nonincreasing and nonnegative real 
numbers, which are the singular values σ1, …, σmin(n,m) of the matrix A. 
The columns of U are denoted as u1, …, un and the columns of V are 
denoted by v1, …vm. 

One of the common applications of SVD, is to approximate A using a 
matrix A(r) with lower dimensions. An r-rank approximation of A, where 
r ≤ min (n,m), is produced by truncating U and V, and using only the 
first r columns of U and r rows of V*, corresponding to the r largest 
singular values. This can be written as 

A(r) =
∑r

i=1
σiuiv*

i (2) 

The energy of a matrix A is then defined by 

E =
∑min(m,n)

i=1
σ2

i (3)  

and the energy ratio represents the energy conserved in the r-truncation 
of the matrix, defined by 

E(r) =
1
E

∑r

i=1
σ2

i (4) 

The energy ratio is an important criterion for choosing the truncation 
rank r, so as to retain most of the energy from the original matrix A. The 
implementation of PCA as part of a reconstruction procedure is similar 
to the pattern recognition problem of facial recognition using SVD [54]. 
In the context of this work, we apply SVD to the dictionary D of simu-
lated EMCs 

D = UΣV* (5)  

where U ∈ R(NT2×NB1+)×(NT2×NB1+), V ∈ RNETL×NETL, Σ is as described before, 
and D ∈ R(NT2×NB1+)×NETL is a dictionary with rank d. The truncated dic-
tionary can then be written as 

D ≈ D(r) = UrΣrV*
r (6)  

with r ≤ d. An important property of the SVD is that the right singular 
vectors form an orthonormal basis for the rows of D. Thus, each entry 
from the original dictionary can be written as linear superposition of 
these orthonormal vectors, allowing to express the dictionary in a lower- 
dimensional space Cr according to 

D(r) = DVr (7) 

The same compression can be applied to the experimental signals 
using the truncated Vr matrix, 

EMC(r)
exp = EMCexpVr (8) 

This being done, the exhaustive procedure of matching experimental 
and theoretical curves can be done using the compressed dictionary and 
data. Total computation time includes, in this case, the time required for 
data compression and for the matching process. The PCA process itself 
requires r × ETL × Nvoxels operations, while number of computations 
required for T2 matching process is NT2 × NB1+ × r × Nvoxels vis-à-vis the 
original matching process which costs NT2 × NB1

+ × NETL × Nvoxels. The 
number of computations is thus reduced by a factor of ∼ ETL

r . 

2.5. Accelerated reconstruction using gradient descent (GD) search 
scheme 

GD is a first-order optimization algorithm for finding local minimum 
of a differentiable function. This technique minimizes an objective 
function F(x), parameterized using x ∈ ℝd, by updating the parameters 
in the negative gradient direction of F using ∇xF(x). Optimization then 
follows 

xn+1 = xn − η∇xF(x) (9)  

where η ∈ ℝ+ is the step size, and for η small enough we have a 
decreasing monotonic set F(x0) ≥ F(x1) ≥ F(x2) ≥ …. Unlike the 
continuous case described above, the EMC dictionary involves discrete 
T2 and B1

+ values. A discrete search problem can be formulated, in this 
case, using graph theory where the set of vertices S denote locations in 
dictionary space: 

S =
{(

T2,B+
1

)
| T2 ∈ [T2min ,T2max ] and B+

1 ∈
[
B+

1min
,B+

1max

]}
(10)  

and the set of edges E ⊆ S × S denote the connection between each pair 
of vertices. The problem of finding a unique pair [T2,B1

+] with the 
minimal l2-norm ‖EMCexp − EMCsim‖2, now translates to searching 
through a weighted graph, where the weight between edges is defined as: 

w(S1, S2) =
⃦
⃦EMCexp − EMCsim,S1

⃦
⃦2 −

⃦
⃦EMCexp − EMCsim,S2

⃦
⃦2 (11) 

Fig. 1. Graphical representation of the l2-norm space of a single voxel with respect to the EMC fitting dictionary. Two-dimensional surf plots show the l2-norm values 
over the dictionary of EMCs for two representative voxels. (a) l2-norm space for a voxel where B1

+ is homogenous resulting in a single minimum point. (b) l2-norm 
space for a voxel where B1

+ is inhomogeneous (e.g. B1
+±ΔB1

+), leading to two local minima, and only one global minimum point. 
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where EMCexp is the experimental EMC being analyzed, and EMCsim, S1 

and EMCsim, S2 denote the simulated EMCs for values of [T2,B1
+] assigned 

to vertex S1 and S2, respectively. Using these definitions, it is possible to 
implement a discrete GD procedure, with the gradient between two 
vertices defined as the weight of the edge connecting them. 

The l2-norm difference between the experimental EMC of an arbi-
trary voxel and the dictionary of simulated EMCs can be graphically 
represented as a function of T2 and B1

+ as shown in Fig. 1. This graphical 
representation highlights two important properties of the l2-norm search 
space: first, it is monotonic in the neighborhood of each local minima, 
and second, it can have either one or two minima. A voxel residing in a 
region where B1

+ is homogeneous would have a single minimum point, 
while regions of inhomogeneous B1

+ fields will result in two minima due 
to the symmetry of B1

+ around its undistorted value (see supplementary 
Fig. S.1). GD search through this space is done in three stages. Stage I: the 
l2-norm space is divided into horizontal strips along the B1

+ dimension, 
i.e. each strip consists all the simulated T2 values and a limited range of 

β = 10 B1
+ values, resulting in NB1+/β strips (see Fig. 2 Stage I). The local 

minimum within each strip is found by sampling the T2 dimension using 
a three-vertices search scheme. These are defined as: 

S0 =
[
T0

2 ,B
+0
1

]

SL =

[

T0
2 −

ΔT2

2
,B+0

1

]

(12)  

SR =

[

T0
2 +

ΔT2

2
,B+0

1

]

Here ΔT2 = 20 ms is the configurable width of the search window, 
the initial B1

+0 is set to be the middle of the strip, the initial T2
0 is set to 

100 ms, and SL/R are the left/right edges of the search window. The use 
of ΔT2 ≫ 1 allows fast traversal through the strip, thereby accelerating 
the search procedure. As long w(S0,SL) ≤ 0 or w(S0,SR) ≤ 0, another 
iteration is done and the center vertex S0 is updated to be SL or SR, 
respectively. The stopping criterion is when both weights of the edges 
are positive. 

Stage II: once the region of the minimal value is found, a 9-vertices 
search scheme is applied on a rectangular window centered at the 
output vertex of previous scheme. The window has a width ΔT2 along the 
T2 dimension and height β/2 along the B1

+ dimension. The 8 other 
vertices are the corners of the search window mid-points at each side 
(see Fig. 2 Stage II). Same GD scheme is then applied to shift the window 
center to the vertex with the largest gradient from the center vertex. This 
continues until all the edges (the gradients) have positive values, i.e. the 
center vertex has the minimal value amongst all the 9 vertices. At Stage 
III, an. 

exhaustive search is performed within the ΔT2 × (β/2) rectangular 
search window, i.e. iterating across all dictionary entries within this 
window and calculating their l2-norm value to find the minimal one. 
Once a minimal value is found for each strip, the global l2-norm mini-
mum value is obtained as the minimal value across all strips, producing 
the voxels [T2,B1

+] value pair. Repeating this process for each voxel 
produces full T2 and B1

+ maps. 
Once these three stages are performed, the calculated B1

+ map is re- 
processed to remove outliers and perform spatial smoothing in order to 
reflect a realistic continuous transmit profile (see Appendix A). The 
resulting map B1

+ is inputted into a second matching process, which is 
similar to the first one, albeit having only a limited range of B1

+ values 
per voxel, equal to the input values ± 3%. The second iteration is thus 
done on only one strip, around the inputted B1

+ from the first iteration. 

2.6. Estimation of relative error when using accelerated reconstruction 

The accuracy of each accelerated reconstruction technique was 
estimated vis-à-vis full exhaustive search of the entire dictionary space. 
The relative percent error was then estimated at each voxel and for each 
reconstruction technique. Mean and standard deviation were then 
calculated across all voxels in the slice. To focus the error estimation on 
the physiologically relevant T2 range we excluded T2 values larger than 
200 ms and smaller than one TE (typically 10 ms). The two assayed 
anatomies were reconstructed using dictionaries having the same 
number of entries. This was done in order to factor out the effect of the 
number of entries on the reconstruction time, and the resulting accel-
eration factors. 

2.7. C/C++ MATLAB compiler considerations 

All computations were performed using MATLAB on a standard 
desktop computer. Part of the reconstruction is implemented in C++

function, which is compiled using one of MATLAB's recommended 
compilers, and invoked using MATLAB's MEX interface. In this work the 
performances of two compilers, the default Microsoft Visual Studio 
Compiler (MSVC) and minGW-64, were tested for variation in 

Fig. 2. Gradient-descent search algorithm. The algorithm implements fast 
traversal over the l2-norm space of every voxel in order to find the minimal [T2, 
B1

+] value pair. Stage I: the l2-norm space is divided to strips, where β represent 
number of B1

+ values in each strip. A three-vertices search scheme (SL, S0, SR) is 
performed, until the mid-point S0 assumes the minimal value. Stage II: A nine- 
vertices search scheme is performed (nine red dots in the Figure). In each 
iteration the center vertex of the search window (solid black rectangle) is 
shifted to the minimum valued vertex (S0*) until the center vertex assumes the 
minimal value out of the nine vertices. Stage III: A full exhaustive search is 
performed across all vertices in the search window, centered around S0*. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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computation speed. 

3. Results 

Comparing the postprocessing times of several datasets we found 
that the minGW-64 compiler provided superior performance, leading to 
a significant x7 decrease in reconstruction times compared to the MSVC 

compiler. The results presented hereon are thus shown for the minGW- 
64 compiled MEX libraries. 

3.1. Accelerated reconstruction of T2 maps using SVD dictionary 
compression 

Fig. 3 shows the feasibility of compressing an EMC dictionary using 

Fig. 3. PCA based compression of an EMC dictionary. Dictionary compression was done by calculating the energy of each principal component in the SVD, in order to 
evaluate the number of principal components that contain meaningful information and are needed for image reconstruction. (a) Original EMC dictionary. (b) Relative 
energy of each principal component [logarithmic scale]. (c) EMC dictionary, spanned in PCA space, attesting to the low rankness of the dictionary matrix and its 
compressibility. 

Fig. 4. Accelerated reconstruction of T2 maps of the brain. Quantitative T2 maps and relative-error maps, using PCA and GD accelerated reconstruction schemes. (a) 
T2 map reconstructed using exhaustive search method, with fitting time of 6.66 s per slice [matrix size = 120 × 128]. (b-c) T2 maps that were fitted using the PCA and 
GD techniques, with fitting times of 3.44 and 0.43 s per slice respectively. (d-e) Relative-error of the PCA and GD accelerated reconstruction schemes produced RMSE 
of 3.40% and 0.00% respectively. 
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PCA. A graph of the relative energy of each PC is shown in Fig. 3b for a 
representative dictionary. The PC values are sorted in logarithmic 
nonincreasing order, exhibiting a fast drop in each PC's energy and a 
change in slope of the graph beginning at approximately the 5th PC. 
Fig. 3a and c show the original and compressed dictionaries after the 
PCA projection. Consistent with the slope in Fig. 3b, most of the signal in 
the PCA projected dictionary is concentrated in the first 5–6 PCs, sug-
gesting that it is possible to project the dictionary (and the experimental 
EMC data) onto the first five eigenvectors in order to accelerate the 
dictionary search process. 

Figs. 4b and 5b show quantitative T2 maps produced using PCA- 
based accelerated reconstruction of brain and calf anatomies of 
healthy subjects. A full exhaustive search produces the ground truth 
maps are shown in Figs. 4a and 5a, with the voxel-wise error maps 
shown in Figs. 4d and 5d respectively. Error values represent absolute 
relative error with respect to the full exhaustive search, producing mean 
RMSE of 3.4% for the brain anatomy, and mean RMSE of 1.1% for the 
calf anatomy, using the PCA acceleration. Total fitting time for the brain 
anatomy using the PCA scheme is 89.44 s (for 26 slices), reflecting a 

reduction of 48.3% with respect to the fitting time using exhaustive 
search. For the calf anatomy the total fitting time is 21.2 s (for 5 slices), 
reflecting a 66.6% decrease with respect to the exhaustive search 
scheme. 

3.2. Accelerated reconstruction of T2 maps using gradient descent method 

The second approach for accelerating the EMC fitting process was 
based on an efficient search pattern in the dictionary search-space. Fig. 1 
shows two typical l2-norm spaces for two representative voxels. Figs. 4c, 
e and 5c,e show quantitative T2 maps reconstructed using GD search 
pattern along with the corresponding fitting errors for healthy brain and 
calf anatomies scans. The GD scheme produced 100% accuracy in the T2 
calculated values. Total fitting time for the brain anatomy (26 slices) 
using the GD scheme is 11.18 s, reflecting a reduction of 93.5% in the 
overall fitting time compared to the exhaustive search scheme. For the 
calf anatomy (5 slices), the total fitting time is 3.95 s, reflecting a 
reduction of 93.8% in the overall fitting time compared to the exhaus-
tive search scheme. Fig. 6 shows a quantitative T2 map for a patient with 

Fig. 5. Accelerated reconstruction of T2 maps of the calf. Quantitative T2 maps and relative-error maps, using PCA and GD accelerated reconstruction schemes. (a) T2 
map reconstructed using exhaustive search method, with fitting time of 12.71 s per slice [matrix size = 106 × 160]. (b-c) T2 maps that were fitted using the PCA and 
GD techniques, with fitting times of 4.24 and 0.79 s per slice respectively. (d-e) Relative-error of the PCA and GD accelerated reconstruction schemes produced RMSE 
of 1.08% and 0.00% respectively. 

Fig. 6. Accelerated reconstruction of T2 maps of a dysferlinopathy patient's calf anatomy. (a) T2 map reconstructed using exhaustive search, with fitting time of 9.0 s 
per slice [matrix size = 128 × 128]. (b-c) Gradient descent fitting of the same anatomy took 0.5 s per slice, with zero RMSE. 
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dysferlinopathy. Fig. 6a shows the original T2 map reconstructed using 
the exhaustive search process, while Fig. 6b shows the T2 map recon-
structed using the accelerated GD scheme. Similar to the healthy sub-
jects' results, no error was produced when employing the GD 
reconstruction scheme, which offered 94.3% reduction in the map's 
fitting time. 

3.3. Evaluating reconstruction properties 

Table 1 summarizes the acceleration factors and corresponding 
relative errors achieved for each anatomy. GD-based method produced 
almost perfect reconstruction, with improved acceleration factors 
compared to the PCA dictionary compression approach. Reconstruction 
times were calculated for both multi-slice scans and also per single/ 
voxel. These acceleration factors depended mainly on the dictionary 
size, namely, the number of simulated T2 and B1

+ values, as well as on 
the number of acquired echoes (experimental ETL). The ETL defines, in 
this case, the number of core operations involved in matching the 
experimental signal in a single voxel to a single dictionary element. 
Thus, shorter ETLs resulted in higher relative acceleration factors, 
although the absolute change in processing time remained the same. The 
performance of the GD acceleration technique depended on the l2-norm 
space of the fitted voxel (which depends mainly on B1

+ uniformity), and 
on the different range of T2 values in each anatomy, affecting the 
number of echoes used in the calculation of the l2-norm between 
experimental and simulated EMCs. 

4. Discussion 

In this study we investigated two approaches for accelerated fitting 
of dictionary-based T2 mapping from MESE data. The original and 
straightforward fitting procedure involved an exhaustive search over an 
entire dictionary space, which is time consuming and limits the clinical 
applicability of EMC-based T2 mapping. Our results show that the GD 
search pattern affords significant reduction in the processing time and 
that choosing the right C++ compiler also has a dramatic effect, which 
can reduce the overall reconstruction times by an additional x7 factor. 

The PCA-based dictionary compression approach resulted in non- 
negligible inaccuracies in the fitted T2 values. These inaccuracies may 
be a result of two inherent issues of the PCA algorithm. First, the 
compression process involves reducing the dimensionality of the dic-
tionary using an SVD approximation process and removing PCs below a 
certain threshold. This involves an unavoidable loss of information, 
creating a trade-off between the accuracy of the reconstruction process 
and the number of principal components retained in the compressed 
dictionary. Secondly, the l2-norm search spaces are different for 
different T2 baselines, leading to T2 dependent errors in the PCA fitting 
process. 

A few important insights can be drawn regarding the search process 
by examining the l2-norm space of fitted voxels. First observation is that 
an ambiguity arises in this search space at areas of inhomogeneous B1

+, 
resulting from symmetry of the Bloch equations around the central B1

+

= 100% value. This ambiguity leads to the emergence of two local 
minima, which requires to separate the graph to two sub-graphs, and 
perform a separate search in each one. The final (absolute) minimum 
[T2,B1

+] value pair is then found by comparing the two local minima. 
The ambiguity of the l2-norm search-space also highlights the impor-
tance of the B1

+ map smoothing process during the second-stage of the 
matching process. As the B1

+ map is expected to be smooth, this 
constraint helps to overcome cases where one of the two local minima is 
wrongly identified as the global minimum due to noise. This is partic-
ularly important at low SNR settings or when fitting short T2 compo-
nents, which are inherently noisy due to their fast signal decay. 

Notwithstanding the fitting accuracy, the acceleration factor was 
very similar across data sets when using dictionaries with similar 
number of entries. The acceleration factor of the PCA method is a result 
of using truncated dictionaries. The search process itself is, in this case, 
the same as in the exhaustive search scheme and therefore depends only 
on the number of simulated [T2,B1

+] pairs and the ratio between ETL 
and the number of principal components used. The common factors, 
affecting both acceleration schemes are the matrix-size and number of 
slices in the scanned dataset – both of which have a linear effect on the 
acceleration factor as the algorithm iterates over all the pixels in the 
reconstructed T2 map and over all slices. 

The reconstruction time of the GD search scheme is mainly affected 
by the number of entries in the simulated dictionary, which can increase 
the steps that are needed to convergence. Although it is very important 
property which can be controlled by the resolution of the simulated 
dictionary, the gradients across the l2-norm of the map are the most 
significant property, affecting the reconstruction time. These gradients 
depend on strength, or level of the T2 encoding, e.g., using refocusing 
flip angles smaller than 180o would lead to weaker T2 weighting, 
thereby influencing the ability to discern between neighboring T2 values 
by decreasing the convexity of the l2-norm search space, hence the 
optimal GD step size. The use of l2-norm is also an important factor as it 
determines the computational complexity of each step during the 
matching process (either PCA or GD based). Other criteria for comparing 
the similarity between experimental and simulated curves can be 
implemented, e.g., simple correlation, or dot product. These, however, 
are more suitable for dictionaries in which the entries are orthogonal to 
one another, in contrast to the low-rank EMC dictionary used here. A 
small improvement in processing time can be achieved by switching to a 
simpler similarity criterion, yet, this will not significantly change the 

Table 1 
Performance and accuracy of the accelerated PCA and gradient descent (GD) 
fitting techniques for brain and calf anatomies.  

Fitting method↓ Anatomy [# 
slices]→ 

Brain 
[26] 

Calf #1 
[5] 

Calf #2 
[5] 

No. of voxels → 366,782 78,758 67,939 

Matrix size → 120 ×
128 

106 ×
160 

128 ×
128 

Exhaustive search 
[ground truth] 

Total duration 
[sec] 

173.2 63.6 45.3 

Duration per slice 
[sec] 

6.66 12.71 9.01 

Duration per voxel 
[ms] 

0.47 0.81 0.67 

PCA Total duration 
[sec] 

89.4 21.2 20.9 

Duration per slice 
[sec] 

3.44 4.24 4.19 

Duration per voxel 
[ms] 

0.24 0.27 0.30 

Acceleration 
Factor 

1.9 3.0 2.2 

Relative error [%] 3.4 ± 1.6 3.0 ± 5.4 4.5 ± 6.0 
Gradient descent Total duration 

[sec] 
11.1 3.9 2.6 

Duration per slice 
[sec] 

0.43 0.79 0.51 

Duration per voxel 
[ms] 

0.03 0.05 0.04 

Acceleration 
Factor 

15.5 16.1 17.5 

Relative error [%] 0.0 ± 0.0 0.0 ±
0.04 

0.0 ± 0.0 

The exhaustive search approach produced ground truth maps which were 
compared against the two accelerated techniques. Measured parameters include 
the mean and standard deviation of the relative error across all voxels within the 
examined anatomy. Voxels with T2 values larger than 200 ms, and shorter than 
10 ms were excluded as they correspond to tissues with lower clinical relevance 
(excluding CSF, which requires an entirely different range of experimental TEs in 
order to be estimated). As can be seen, the GD technique achieved perfect 
reconstruction, with acceleration factors of 15–18 for a dictionary comprised of 
203 T2 × 41 B1

+ entries. 
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overall runtime process, as each of these criteria involve an O(n) number 
of operations (where n is the vectors' length). 

5. Conclusions 

In this paper, we present two approaches for accelerating the 
reconstruction of quantitative T2 maps from MESE data using the EMC 
algorithm. The PCA based compression method is used to reduce the 
dimensions for both the simulated dictionary and acquired data so as to 
perform the search over shorter vectors. This approach, however, results 
in inaccuracies in the calculated T2 maps, while providing only mod-
erate acceleration factors. The GD-based approach, on the other hand, 
yielded significant acceleration factors and close to perfect fitting 

accuracy in comparison to a full exhaustive search. In addition to 
accelerating the reconstruction process, we have also accelerated the 
dictionary generation process as can be seen in Appendix B. We believe 
that these advances will facilitate integration of realtime quantitative T2 
mapping in clinical settings. Future work may be focused on further 
acceleration using advanced hardware solutions, e.g. using GPUs or 
artificial intelligence tools. 
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Appendix A. The EMC Algorithm 

This appendix contains a concise description of the steps for generating T2 maps using the EMC algorithm, covering the data acquisition, pre- 
processing, and post-processing procedures. 

Step 1 – MRI data acquisition 
Experimental data is acquired using a multi-echo spin-echo (MESE) protocol, producing a time-series of T2 weighted DICOM images, corresponding 

to increasing echo-times (TEs). 
Step 2 – Pre-processing: Generation of a simulated EMC dictionary 
Tracking the precise magnetization evolution during a MESE scan is done using simulations of the prospective pulse sequence, programmed in- 

house in C++ and MATLAB (The MathWorks Inc., Natick, MA) and based on time and space propagation of Bloch equations. The exact pulse 
sequence scheme and the corresponding parameter values are obtained through offline simulation of the pulse sequence diagram extracted using 
Siemens's POET sequence testing tool. This provides information regarding the amplitudes and timing of each RF and gradient pulse. The actual RF 
pulse shapes were read from the pulse sequence source code and imported into MATLAB. 

Although full volumetric simulations would have been ideal for EMC modeling, such simulations are not feasible due to their extreme compu-
tational intensity, and the extended runtimes that are needed in order to track a pool of 103…104 spins in a high resolution four-dimensional space (x, 
y,z,t). To facilitate this process, reduced one-dimensional imaging simulations are carried out solely along the slice dimension (see ref. [6] for 
justification of this procedure). The internal spatial resolution of these simulations is set high enough to accurately account for intra-voxel dephasing 
(10–100 μm for data acquired on standard clinical scanners), while the temporal resolution is matched to the one used in the actual MESE experiment. 

Each run of the simulation generates a single echo-modulation-curve, designating the intensity of a MESE echo train for a given parameter set. A 
dictionary of simulated EMCs is thus constructed by repeating the simulations for a range of T2 = 1…1000 ms, and transmit field (B1

+) inhomogeneity 
scales of 70% and 130%, where a value of 100% corresponds to a purely homogeneous B1

+ field (see Fig. A.1). The total simulation time depends on 
the echo train length and number of T2 and B1

+ values simulated, with typical times ranging between 1 and 4 h on a multi core desktop PC.

Fig. A.1. Two examples of simulated echo-modulation-curve (EMC) dictionaries for a multi-echo spin-echo (MESE) protocol. (a) A simplified dictionary containing 
two limited ranges of consecutive T2 values. (b) Full dictionary, spanning T2 range of 1…1000 ms and B1

+ inhomogeneity scales of 70%...130%. The yellow line 
illustrates an experimentally acquired EMC for a single pixel, which was matched to the dictionary of simulated EMCs producing a specific pair of [T2, 
B1

+] values. 

Step 3 – Postprocessing: Generation of T2, B1
þ and Proton-Density (PD) maps 

Quantitative T2 values are generated on a pixel-by-pixel basis from the MESE DICOM series by matching the experimental EMC in each pixel to the 
pre-calculated dictionary of simulated EMCs. Matching is done by calculating the l2-norm of the difference between the experimental and simulated 
EMCs, and choosing the EMC yielding the minimal norm value. Following this procedure, a unique pair of [T2, B1

+] values is assigned to each pixel, 
yielding the desired T2 parametric map of the anatomy. Finally, proton density maps are calculated by extrapolating the intensity of each pixel in the 
image from the first echo-time (t = TE) to the time point t = 0 using the fitted T2 map according to: 
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PD(x, y) =
S(x, y, t = TE)

e− TE/T2(x,y)
(A.1)  

Appendix B. Accelerating the generation of EMC dictionaries 

Generation of EMC dictionaries requires to simulate the propagation of magnetization in a MESE protocol for a range of T2 and B1
+ values. Each run 

of the simulation generates a single EMC. The time required for simulating an entire dictionary will depend on the range of simulated T2 and B1
+

values, and on the echo train length. An effective way to accelerate the generation of EMC dictionaries is to decimate the range of simulated T2 and B1
+

values and fill in the missing entries by a much faster interpolation procedure. The type of interpolation may vary from simple linear interpolation to 
more complex techniques. Here, we employed MATLAB's C2 spline interpolation, which was found to produce the most accurate results [55].

Fig. B.1. Histograms of T2 and B1
+ values in a typical brain scan. Values were calculated using the EMC algorithm [56].  

To demonstrate the effectiveness of this acceleration technique we consider here a standard dictionary containing 440 T2 values with 1 ms res-
olution in the range 1…300 ms, and 50 ms resolution in the range 300…1000 ms; and 61 B1+ values in the range 70…130% and resolution of 1%. 
Before generating a decimated dictionary, we examined the typical T2 and B1+ content of a brain anatomy (shown in Fig. B.1). As can be seen, this 
anatomy contains a relatively wide range of T2 values but only a limited range of B1+ values, centered around B1 + =100%. 

Following this we decimated the original dictionary to contain 21% of the original dictionary's entries, potentially reducing the dictionary gen-
eration time by 79%. The ranges of simulated T2 and B1

+ values were 1:1:40, 42:2:80, 84:4:160, 200:40:280, 320:80:1000 ms, and 70:2:130% 
respectively. The mean difference between the interpolated and original dictionaries was 0.0011 %  ± 0.0033%. This will depend on the level of 
decimation, which is recommended to follow a logarithmic scale along the T2 dimension, starting with small spaced sampling at low T2 values, and 
gradually increasing towards larger T2 values. Fig. B.2a–b presents T2 maps reconstructed using the fully-simulated and decimated dictionaries. A map 
of the relative-error of T2 values that were fitted using the two dictionaries is shown in Fig. B.2c. As can be seen, the two fitting procedures produces 
almost identical maps, except for a few small errors of <2%, appearing in the CSF region where T2 values are well beyond the range of TE's that were 
sampled during the scan (TE = 10:10:20 ms). These results confirm that the generation of EMC dictionaries can be significantly accelerated without 
loss of clinical information.

Fig. B.2. Comparison of T2 maps reconstructed using (a) a fully simulated dictionary vs. (b) a dictionary that was decimated and interpolated. The generation times 
of the two dictionaries were 2.61 h and 0.55 h respectively. (c) Relative-error between the two maps showing no significant error aside from a few <2% errors inside 
the CSF. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2021.12.006. 
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