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Abstract
Purpose: Multicomponent analysis of MRI T2 relaxation time (mcT2) is com-
monly used for estimating myelin content by separating the signal at each voxel 
into its underlying distribution of T2 values. This voxel-based approach is chal-
lenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI 
signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statis-
tical strength of identifying spatially global mcT2 motifs in white matter segments 
before deconvolving the local signal at each voxel.
Methods: Deconvolution is done using a tailored optimization scheme, which 
incorporates the global mcT2 motifs without additional prior assumptions regard-
ing the number of microscopic components. The end results of this process are 
voxel-wise myelin water fraction maps.
Results: Validations are shown for computer-generated signals, uniquely de-
signed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated 
excellent fitting accuracy, both for the numerical and the physical mcT2 phan-
toms, exhibiting excellent agreement between calculated myelin water fraction 
and ground truth. Proof-of-concept in vivo validation is done by calculating my-
elin water fraction maps for white matter segments of the human brain. Interscan 
stability of myelin water fraction values was also estimated, showing good cor-
relation between scans.
Conclusion: We conclude that studying global tissue motifs prior to perform-
ing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently 
overcomes the ambiguity in the T2 space. This new approach can improve my-
elin water imaging and the investigation of microstructural compartmentation 
in general.
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1   |   INTRODUCTION

Biological tissues have a complex microstructure, which 
is challenging to probe in vivo. Notwithstanding its high 
clinical value, MRI is limited in visualizing tissues micro-
structure due to a hard limit on achievable resolutions. 
Recent studies have shown that this limitation can be par-
tially circumvented by modeling the MRI signal as con-
sisting of several water pools, each residing in a distinct 
magnetochemical environment.1 The measured MRI sig-
nal is thus considered to reflect a spatiotemporal average 
over several water pools and over time. In tissues where 
microstructural order exists, it is possible to identify a fi-
nite number of specific water pools (i.e., tissue compart-
ments), each producing a signal that is proportional to 
the relative amounts of water in that compartment. By 
deconvolving the signal into its underlying components, 
it is thus possible to indirectly probe the tissue’s subvoxel 
compartmentation. An example of such ordered tissue, 
and the focus of this study, is the brain white matter 
(WM). This tissue is typically modeled to have 3 distinct 
water pools: intra-axonal water, extra-axonal water, and 
water that reside between myelin sheaths.1 Estimating 
the relative myelin water fraction (i.e., myelin water im-
aging [MWI]2,3) is of the high interest because it reflects 
the local myelin content4,5—a valuable biomarker for my-
elodegenerative disorders6,7 and neuronal developmental 
processes.8,9

An effective approach for probing subvoxel compart-
ments is multicomponent analysis of MRI transverse T2 
relaxation time (mcT2).10–12 This approach leverages the 
fact that T2 relaxation times vary between compartments 
and also that its spectral profile (T2 spectrum) changes in 
presence of pathology.3 In the case of WM, mcT2 is based 
on the difference in T2 between water pool that reside 
between myelin sheaths (1–40  ms) and the extra-/intra-
water pools (>50 ms).2,3 Therefore, when interpreting the 
T2 spectrum of WM voxel, the relative amount of myelin 
water can be estimated by dividing the area under the pool 
with the shortest T2 by the area of the entire spectrum. 
This ratio is known as myelin water fraction (MWF).13,14 
Applications mcT2 analysis have already been shown, for 
example, in multiple sclerosis, where myelin loss may be 
detected through a reduction in the short T2 component,15 
or in Alzheimer disease, where demyelination was found 
to correlate with cognitive decline.16

The most efficient pulse sequence for extracting mcT2 
data is the classical Hahn spin echo. This acquisition 
scheme, however, involves extensive scan times, making 
rapid multi-echo spin echo (MESE) protocols the most 
practical in vivo alternative. Other approaches for mcT2 
use fast multi-echo acquisition schemes, which combine 
multiple gradient echoes per spin echo,17 multicompo-
nent driven equilibrium single pulse observation of T1 or 
T2,18,19 and MR fingerprinting.20,21 Still, these gradient-
echo based methods have not supplanted the established 
multi-spin echo methods for mcT2 relaxometry,22,23 mainly 
due to their reduced T2 encoding efficiency.

Traditionally, mcT2 analysis of MESE data considers 
the signal to be a weighted sum of mono-exponential 
decay curves, allowing the use of discrete Fredholm inte-
gral equation (i.e., inverse Laplace transforms) for produc-
ing the T2 spectrum:

Here, S is the measured signal at a given voxel; ti is a dis-
crete time axis ranging from the first to echo train length 
time points; M is the number of signal components asso-
ciated with tissue compartments, wm and T2,m are the am-
plitude and relaxation time of component m, respectively; 
and η is a noise term. A straightforward solution of this 
problem can be achieved using nonnegative least squares 
(NNLS)–fitting algorithm.24 Several improvements of the 
basic NNLS approach have been suggested, mostly by add-
ing regularization terms to stabilize the fitting process and 
by modeling the T2 spectrum as a discrete rather than con-
tinuous series of values.25,26 Other techniques assume an 
a priori fixed number of 2 or 3 compartments for the WM 
or exploit spatial correlations between adjacent voxels.27,28 
Notwithstanding the advantages of the above techniques, 
they produce different values, which moreover vary be-
tween scanner and scan settings, leading to a lack of a 
gold standard MWI technique.12,23 The key challenge in 
this case is the inherent ambiguity of the multiparamet-
ric mcT2 space, which has a potentially large number of 
possible microstructural configurations that can match a 
certain experimental decay curve. The result is a highly 
underdetermined and ill-posed problem whose solution 
suffers from non-uniqueness and sensitivity to noise.29 
Regularization alleviates some of the ill-posedness of the 
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problem; however, it does not ensure convergence or va-
lidity of the ensuing solution.

In this study, we introduce a new mcT2 approach, 
which employs a statistical preprocessing stage to identify 
spatially global mcT2 motifs of the tissue. These motifs 
consist of a subset of mcT2 patterns, which are common 
to the brain segment being analyzed. Once identified, the 
motifs are used to locally analyze the signal at each voxel 
while still imposing standard regularization constraints. 
Eventually, each voxel is associated with a unique T2 spec-
trum and MWF value. The statistical power produced by 
this data-driven approach endows the whole process with 
additional robustness, which stabilizes the voxel-wise 
optimization scheme. Another strength of this approach 
stems from the use of the echo-modulation curve (EMC) 
technique.30–32 By incorporating the exact scan settings 
and protocol implementation into its signal model, this 
technique is able to overcome the contamination of MESE 
signals by stimulated and indirect echoes and produce ac-
curate T2 values that are reproducible across scanners and 
scan settings.31 The accuracy of the proposed mcT2 ap-
proach is demonstrated on numerical and physical phan-
toms, followed by feasibility of applying this technique on 
WM brain tissue in vivo.

2   |   THEORY

Multicomponent T2 decay curves consist of a linear com-
bination of single T2 signals originating from microscopic 
subvoxel compartments. Previous studies have shown 
that tissues with ordered internal structure can be mod-
eled using a discrete and finite set of compartments with 
distinct T2 values.12,28 Accordingly, we adopt here a com-
mon model for myelinated WM tissue consisting of up to 
3 signal sources: (i) water trapped between myelin sheaths 
(fast-relaxing component), (ii) intra-axonal water, and (iii) 
extra-axonal water.33 The new mcT2 signal analysis ap-
proach suggested herein is furnished with several unique 
features. First, unlike traditional approaches that analyze 
data from a single voxel, we start by identifying regional 
mcT2 motifs from an entire brain segment and only then 
focus on deconvolving the signal from each voxel. Secondly, 
we allow the existence of either 1, 2, or 3 T2 compartments 
within each voxel without imposing a fixed number or dis-
tribution of compartments. Third, we do not rely on an ex-
ponential decay but instead base our analysis on the EMC 
signal model. Incorporating this model into (1) yields:

The numerical term EMC (T2,m, tn) denotes a single 
T2 decay curve out of a dictionary of possible curves. 
Equation (2) can be cast into a linear matrix form:

where S ∈ ℝ
ETL×1 is the experimentally measured signal 

from a single voxel; E ∈ ℝ
ETL×NT2 is a simulated dictionary 

of single-T2 EMC signals expected to appear in the tissue; 
w ∈ ℝ

NT2×1 is an unknown weights vector representing the 
relative fractions of the elements in E; and H ∈ ℝ

ETL×1 is an 
unknown noise vector. Straightforward inversion of this sys-
tem of equations is computationally intractable due to the large 
number of possible combinations and noise related ambiguity, 
both which lead to unstable solutions. To overcome this inher-
ent ill-posedness, we precede the solution to (3) with an import-
ant preprocessing step whereby we identify a basis set of mcT2 
motifs that best describe the entire WM segment. This subset of 
mcT2 motifs, which were generated from weighted linear com-
binations of the single T2 signals in E, is used as a new basis to 
deconvolve the local signal within each voxel.

2.1  |  Identification of a basis set of global 
mcT2 signal motifs

Identifying the tissue-specific set of mcT2 motifs is based on 
the premise that only a finite number of microstructural con-
figurations exist within each tissue segment. This process is done 
in 2 stages: first, a broad mcT2 dictionary is generated that con-
tains all possible permutations of T2 values and fractions. This 
extensive set of configurations is then narrowed down to a 
small and finite set of motifs using statistical correlation with 
the measured data. We note that separate dictionary should be 
created for each scan settings. This, however, does not pose a 
serious limitation because the same dictionary can be used for 
varying FOVs and matrix sizes once the protocol is stabilized.

The full range of possible microstructural tissue con-
figurations is constructed by combining sets of single 
T2 signals, logarithmically spaced between 1 … 800  ms, 
thereby covering the physiological range of T2 values 
(Figure 1(1)). This results in a dictionary of mcT2 motifs 
� ∈ ℝ

ETL×NmcT2having NmcT2 elements, each consisting of 
linear combination of single T2 components with varying 
fractions (Figure 1(2)). The transformation operator be-
tween single-  to multi-component dictionary is denoted 
by a coefficient matrix � ∈ ℝ

ETL×NmcT2 W∈ ℝ
NT2×Nmc, with 

rows representing the relative fractions of each single T2 
component (w) and the columns representing all possible 
combinations. Put in matrix form, this becomes:

(2)
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where we note that the sum of weights for each mcT2 com-
bination needs to be one, and that fraction values are in the 
range of 0 … 1. The number of elements in the mcT2 dic-
tionary (NmcT2) increases dramatically with the number of 
T2 values (NT2), and the step size of the relative fraction of 
each component (Δω). The final number of elements can be 
calculated using the following combinatorial sum:

resulting, for example, in 4 401 475 elements for 1–3 subvoxel 
compartments, 50 T2 values, and Δw = 0.1. It is important 
to emphasize that each mcT2 dictionary element also has a 
single T2 value associated with it, calculated analytically as 
the weighted average of the single T2 values from the differ-
ent subvoxel compartments. The method benefits from the 
fact that some mcT2 dictionary elements have single T2 values 
that do not exist in the analyzed tissue segment (Figure 1(4)). 
By performing a single T2 fit of our data, we narrow down 

the number of mcT2 elements by removing all dictionary el-
ements whose single T2 value do not fall within a 10% of the 
range of T2 values found in this segment (20% was used for 
T2s < 30 ms) (Figure 1(5)). This is done in 3 stages: (i) For each 
single T2 value in the segment, we identify a range of ±10% 
around it (20% for T2 ≤ 30); (ii) all ranges are consolidated into 
a global range single T2 values appearing in the tissue; (iii) we 
exclude dictionary elements which are averaged to single T2 
values outside this set. De facto this step removed almost half 
of the initial number of mcT2 dictionary elements.

Once an mcT2 dictionary is available, the statistical 
correlation between each dictionary element (d) and ex-
perimental signal (e) is calculated based on the L2 norm 
difference between each pair (Figure 2(1)). This provides 
a pairwise score value Pr(d,e), which is normalized to [0 
… 1] (Figure 2(2)). This score is subsequently raised to the 
power of 1 ≤ β < 104 to prioritize mcT2 motifs that have 
higher probability to be found within the segment (Figure 
2(3))—even if they match well with only a small number 
of voxels (e.g., for modelling focal lesion points within the 
analyzed segment). Finally, the score of each dictionary 
element (d) is summed across all voxels (Figure 2(4)) to 
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F I G U R E  1   A flowchart describing 
the creation of a data-driven dictionary of 
mcT2 motifs for a selected brain segment. 
(1) Multi-component T2 signals (mcT2) 
are acquired, whereas the corresponding 
scan parameters are extracted and 
inputted into the echo-modulation-curve 
signal model30 to produce a dictionary 
of simulated single T2 signals. (2) This 
dictionary is first used to create an 
expanded dictionary of mcT2 motifs by 
combining 1, 2, and 3 single T2 signals 
with varying weights according to the 
physiological range of microstructural 
tissue configurations. (3) Experimental 
mcT2 data is denoised using a PCA-based 
denoising scheme.34 (4) Denoised data 
from a specific brain region (ROI) is used 
to generate a map of single T2 values. (5) 
The range of the single T2 values within 
the segment is used to filter out mcT2 
motifs that do not average to a T2 value 
that matches to the segment’s T2 range. 
mcT2, multi-component T2 signals; ROI, 
region of interest
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form a global, element-specific, probability score Pr(d). 
We note the important role of the β parameter, which is 
to ensure that mcT2 motifs with very high scores, that is, 
which perfectly match a small number of the voxels in the 
segment, will maintain their high score when summing 
the scores of all voxels. This, for example, can happen 
when small focal pathology appears within the segment.

To exclude low SNR signal points, we precede these cal-
culations by normalizing the signal (dividing by the first 
time point) and truncating data points at the tail of the sig-
nal below a 0.1 threshold. Excluding low SNR data points 
removes any bias caused by Rician noise and leaves H with 
only Gaussian noise distribution.35 Following the calcula-
tion of all scores, a segment-specific set of ℒmcT2 motifs is 
selected having the highest scores, that is, the mcT2 dictio-
nary elements with highest probability to be found within 
the segment (Figure 2(5)). Denoting this group of ℒ ele-
ments as 𝔼 ∈ ℝ

ETL×ℒ, we can substitute the term Ew in (3) 
and express the signal at each voxel as a sum of mcT2 motifs:

where 𝕎 ∈ ℝ
ℒ×1 is the unknown weights of each motif in �.

2.2  |  Calculating each voxel’s mcT2 content

To solve (6), we cast it as minimization problem with 
the following objective function:

Here, S∈ ℝ
ETL×1 is the measured signal, and λTik, λL1 > 0 

are Tikhonov and L1 regularization weights. The Tikhonov 
regularization is added to guarantee a well-posed problem, 
and the L1 regularization is added in order to favor sparse 
T2 distributions. The regularization weights of the objective 
function are determined based on an exhaustive search in 
the range 10−7…10+7, ensuring optimal performance and 
stability (see Table 1). The last 2 constraints ensure that the 
solution vector � is nonnegative and forces its sum to be 
unity. Equation  (7) was solved using MatLab’s quadprog 
solver (version 2019b) for quadratic objective functions 
with linear constraints (MathWorks, Natick, MA). This 
solver finds a minimum for problems specified by the stan-
dard form of quadratic programming:

(6)S = �� +H

(7)
argminΦ

�

=
1

2
‖��−S‖22 +�Tik ‖�‖22 +�L1‖�‖1

s. t.�i≥0,
�

�i=1.

F I G U R E  2   The process of identifying 
spatially global mcT2 motifs of myelinated 
tissues. (1) A correlation-based score is 
computed between each experimental 
signal “e” and mcT2 dictionary element 
“d” to produce a set of probability scores 
Pr(d,e). (2,3) Scores are normalized and 
raised by power of β to prioritize mcT2 
motifs according to their probability to 
be found within the segment while still 
retaining selected motifs that have high 
correlation with only a small number 
of voxels. (4) Sum the scores of each 
dictionary element across all signals to 
produce a global score Pr (d) for each 
dictionary element. (5) Select a finite 
group of ℒ dictionary elements with the 
highest scores
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where H ≽ 0 represents a semi-positive definite matrix; f rep-
resents a linear term; and x denotes a vector of unknowns. 
To use this quadratic programming solver, we rearrange the 
terms in (7) and add a set of slack variables. These steps are 
described in detail in the Supporting Information (S4).

MatLab’s (MathWorks, version 2019b) quadratic pro-
gramming solver of (8) produces a solution x containing 
2×ℒ variables, out of which we are only interested in 
the first ℒ, which represent the elements in �. We re-
member that these weights are used to extract the exper-
imental signal from the � matrix of mcT2 motifs (see (6)). 
Recovering the actual voxel-specific mcT2 spectrum, that 
is, the weights vector w from (3), is performed in 2 steps. 
First, we extract Wℒ ∈ ℝ

NT2×ℒ by identifying the columns 
in W, the coefficient matrix containing all possible per-
mutations of multi-T2 fractions associated with the ℒ se-
lected mcT2 motifs. We then multiply each column in Wℒ 
by its matching weight in � and sum across columns to 
obtain the final weights vector w. This step is similar to 
calculating w =Wℒ�.

MatLab’s (MathWorks) quadratic programming al-
lows input of an initial solution to the optimization 
process. To utilize this feature, we perform 2 iterations 
of the optimization procedure.7–20 The first is preceded 
by a preprocessing step for which a 2D moving average 
window of 3 × 3 voxels is applied to all images in order 
to increase SNR on expense of blurring the spatial fea-
tures. The output from this iteration is then input as an 
initial guess to the second iteration, which uses the orig-
inal images (without averaging), thereby retaining the 
original spatial resolution.

3   |   METHODS

3.1  |  Numerical phantom simulations

The mcT2 signal motifs of 5 myelinated tissues and 1, 2, and 
3 compartments were simulated for a range of myelin water 
fractions of 0%–20% (T2 = 10–40 ms) and intra-/extracellular 
water compartments (T2 = 50–80 ms). Figure 3 illustrates 
the numerical phantom design. The suggested data-driven 
mcT2 algorithm was applied to the simulated data (param-
eters values are detailed in Table 1 and above). To estimate 
its accuracy when using standard voxel-wise NNLS fitting al-
gorithm, we have implemented the state-of-the-art regular-
ized NNLS inversion algorithm by Provencher,36 which was 
used in the landmark publication by Whittall and MacKay.24 

(8)min
x

1

2
xTHx + f Txs. t.

⎧
⎪⎨⎪⎩

Ax≤b

Aeqx=beq
lb≤ x≤ub

,
T

A
B

L
E

 1
 

Li
st

 o
f o

pt
im

al
 p

ar
am

et
er

s f
or

 th
e 

su
gg

es
te

d 
m

cT
2 a

lg
or

ith
m

Pa
ra

m
et

er
D

ic
ti

on
ar

y 
E

le
m

en
ts

a
Si

ng
le

 T
2 

E
le

m
en

ts
b

m
cT

2 M
ot

if
s 

E
xp

ec
te

d 
in

 S
eg

m
en

t
Fr

ac
ti

on
al

 T
2 

W
ei

gh
ti

ng
c

Pr
io

ri
ti

za
ti

on
 

Fa
ct

or
T

ik
ho

no
v 

R
eg

. W
ei

gh
t

L 1
 R

eg
. W

ei
gh

t
N

at
ur

al
 T

2 V
ar

ia
ti

on
 

A
llo

w
ed

 in
 S

eg
m

en
td

Sy
m

bo
l

N
m

cT
2

N
T

2
�

Δ
ω

β
λ T

ik
λ L

1
T
th
r

2

N
um

er
ic

al
 

si
m

ul
at

io
n

3 
27

3 
30

4
64

50
0.

1
10

3
10

−
3

10
3

0.
1–

0.
2

Ex
pr

. p
ha

nt
om

1 
30

6 
59

7
50

30
0.

05
–0

.1
10

2
10

−
3

10
3

0.
1–

0.
2

In
 v

iv
o 

sc
an

3 
27

3 
30

4
64

30
0.

05
–0

.1
10

4
10

−
2

10
3

0.
1–

0.
2

A
bb

re
vi

at
io

ns
: E

xp
r.,

 e
xp

er
im

en
ta

l; 
m

cT
2, 

m
ul

ti-
co

m
po

ne
nt

 T
2 s

ig
na

ls
.

a Th
e 

nu
m

be
r o

f e
le

m
en

ts
 in

 th
e 

di
ct

io
na

ry
 o

f m
cT

2 m
ot

ifs
 c

om
pr

is
in

g 
of

 1
, 2

, a
nd

 3
 si

ng
le

 T
2 c

om
po

ne
nt

s.
b Th

e 
nu

m
be

r o
f s

in
gl

e 
T 2

 v
al

ue
s r

an
gi

ng
 lo

ga
ri

th
m

ic
al

ly
 b

et
w

ee
n 

1 
an

d 
80

0 
m

s u
se

d 
fo

r c
re

at
in

g 
th

e 
si

m
ul

at
ed

 d
ic

tio
na

ry
 o

f m
cT

2 m
ot

ifs
.

c W
at

er
 p

oo
l f

ra
ct

io
ns

 w
er

e 
se

t a
t j

um
ps

 o
f Δ

ω 
=

 0
.0

5 
fo

r T
2 ≤

 4
0 

m
s, 

an
d 

Δ
ω 

=
 0

.1
 fo

r T
2 >

 4
0 

m
s.

d N
at

ur
al

 v
ar

ia
tio

n 
in

 T
2 v

al
ue

s o
f ±

10
%

 w
as

 im
po

se
d 

fo
r T

2 ≤
 3

0 
an

d 
±

20
%

 fo
r T

2 >
 3

0.



      |  2527OMER et al.

Prior to the analysis, Gaussian noise at SNR of 200, 100, 60, 
40, and 25 was added to the signal. Next, MWF values were 
calculated from the reconstructed spectra by summing the 
area under the peak in the short T2 range (0–40 ms)2 and 
then compared between both methods. The sum of the final 
weights vector was normalized to 1, meaning that this area 
directly reflected the MWF value. The exact set of param-
eters that was used for the voxelwise NNLS fitting algorithm 
can be found in the Supporting Information Data S3.

3.2  |  Experimental phantom 
preparations

Two physical mcT2 phantoms, consisting of 2 and 3 
subvoxel compartments, were prepared. Each phantom 
consisted of a varying number of 1 mm tubes that were 
gradually inserted into a 5 mm tube. The dimensions al-
lowed the entire phantom to be captured within a single 
imaged voxel, and at the same time they enabled high-
resolution imaging, which provided ground truth of the T2 
values and fractions of each compartment (see Figure S1). 
Fourteen 1 mm tubes with T2 = 11 ms represented my-
elin water. Six 1 mm tubes with T2 = 80 ms represented 

the extra-axonal water pools. These were prepared by 
mixing MnCl2 and double distilled water at different 
concentrations. The two 5 mm holding tubes were filled 
with solutions having T2 = 60 and 51 ms for the 2 and 3 
compartments, respectively. Phantoms were scanned in a 
dynamic manner by gradually inserting 1 mm tubes into 
the 5 mm holding tubes and imaging each phase of the 
phantom. Eight 1 mm tubes (T2 = 11 ms) were inserted, 
1 at a time, into the two-compartment holding tube; and 
twelve 1 mm tubes (T2 = 51 and 80 ms) into the three-
compartment tube. The low-resolution mcT2 data of 
each scan served as input for the mcT2 fitting algorithm 
with the MWF calculated according to relative area of 
the short-T2 peak (0–40 ms)2. Ground truth MWF values 
were calculated from the corresponding high-resolution 
scans based on the relative area of the short T2 tubes. 
Pearson correlation was calculated between the actual 
and estimated MWF to assess the statistical correlation.

3.3  |  Phantom MRI scans

Phantom MESE scans were performed on 9.4 Tesla (Bruker 
BioSpec) using a single channel transceiver coil. A series 

F I G U R E  3   Numerical phantom design for modeling myelinated brain tissue. A series of simulated mcT2 signals motifs were produced 
based on clinical MESE protocol parameters and arranged in a 2D numerical Shepp-Logan phantom design. (A) The simulated tissue 
contains 5 ensembles simulated single T2 signals weighted by different T2 fractions associated with myelinated brain tissue composition 
(exact fractions are listed within the figure). (B) 2D display of the Shepp-Logan phantom presenting the distribution of the 5 mcT2 motifs 
within the segment with different colors. Prior to analysis, white Gaussian noise was added to the numerical signals at different SNR = {200, 
100, 60, 40, 25}. (C) The MWF map of the numerical phantom in B. MESE, multi-echo spin echo, MWF, myelin water fraction.
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of scans were performed with varying internal configura-
tion of the phantom, each involving a high-resolution scan 
(voxel size = 156  ×  156 µm2) and a low-resolution scan 
(voxel size = 5 × 5 mm2). Whereas the low-resolution scan 
captured the entire phantom within a single voxel and 
produced a genuine mcT2 signal, the high-resolution scan 
provided reliable ground truth information about the T2 
values within each compartment. Phantoms were scanned 
at several configurations, each time with increasing frac-
tion of the short T2 components (see Figure 5) based on the 
relative area of the short T2 capillaries tubes.

To further increase the number of low-resolution slices, 
each scan was repeated 9 times with varying slice off-
sets, producing a total of 81 mcT2 signals (black lines in 
Figure S1). The remaining experimental parameters were 
Naverages = 4, TR = 5000 ms, TE = 8, 16, …, 240 ms (NTE = 	
30), slice thickness = 0.8  mm, acquisition bandwidth = 
50  kHz, and slice gap = 150%. The mcT2 data was fitted 
using a dictionary composed of 50 single T2 signals, loga-
rithmically spaced between 1–800 ms and fraction resolu-
tion of Δω = 0.05 for T2 ≤ 40 ms and Δω = 0.1 for T2 > 40 ms 
This resulted in a dictionary of 1  306  597 mcT2 motifs, 
which were narrowed to ~600 000 elements based on their 
single T2 values. Statistical correlations between dictionary 
elements and each pixel signals were calculated (Pr(d,e)), 
and the resulting set of scores was normalized and raised 
by a power of β = 102. Scores were then summed across all 
pixels to obtain a global probability score (Pr(d)), and a set 
of ℒ = 30 dictionary elements with highest probabilities 
was selected as basis set of mcT2 motifs (�). Table 1 lists 
the full set of parameters values. Because all the slices are 
expected to produce the same mcT2 spectra, MWFs of each 
compartment were averaged across all slices.

3.4  |  In vivo brain MRI scans

In vivo brain scans were performed on a 3 Tesla whole 
body MRI scanner (Prisma, Siemens Healthineers) using 
a 24-channel head coil. Scans were performed according 
to Helsinki ethical standards. To test the mcT2 fitting re-
producibility, 3 identical MESE scans were performed for 
the same subject during 1 scan session. The subject was 
a 31-year-old healthy male with normal body mass index. 
Experimental parameters were FOV = 200 × 210 cm, ma-
trix size = 216  ×  180, NAVERAGE = 1, TR = 3000  ms, TE 
= 10, 20, …, 200 ms (NTE = 20), slice thickness = 3 mm, 
and acquisition bandwidth = 210 Hz/Px. To improve data 
SNR, an image denoising step was applied to the raw im-
ages using the algorithm described in Ref.34 Three WM 
segments were investigated: the genu corpus callosum 
(GCC), splenium of corpus callosum (SCC), and a left for-
ceps minor segment containing 201  227 and 475 voxels, 

respectively. Segments data were analyzed with an mcT2 
dictionary containing 64 elements, logarithmically spaced 
between 1 and 800 ms, and fraction resolution of Δω = 0.05 
for T2 < 40 ms and Δω = 0.1 for T2 > 40 ms, producing 
3,273,304 mcT2 motifs. Initial fitting identified the specific 
range of single T2 values within each segment used it to ex-
clude mcT2 motifs that do not fit into this range. Statistical 
correlations between simulated and experimental mcT2 
signals (Pr(d,e)) were normalized and raised by a power of β 
= 104. Global probability scores Pr(d) were computed, and 
a set of mcT2 motifs containing ℒ = 30 dictionary elements 
with highest probabilities was selected. Table 1 lists the full 
set of parameters values. To compare the mcT2 content at 
T2 > 40  ms, the geometric mean T2 (intra-/extra-axonal 
water T2)11 of the major component was calculated (mean 
on a logarithmic T2 scale). To demonstrate the potential of 
the proposed method to produce whole-brain MWF maps, 
the suggested data-driven algorithm was applied on the en-
tire WM using the same mcT2 dictionary and parameter 
set (last row in Table 1). To appreciate the advantage of 
the data-driven approach, we compared the resulting map 
with a map that was generated using the standard voxel-
wise NNLS fitting algorithm by Provencher.36

4   |   RESULTS

4.1  |  Numerical phantom results

Five representative mcT2 spectra containing 1, 2, and 3 sub-
voxel components of a numerical phantom are shown in 
Figure  4, compared with ground truth (dashed and solid 
lines, respectively). Excellent reconstruction was achieved 
at SNR = 60 for the 1, 2, and 3 compartment tissues, as well 
as for the inflammated tissue. The fitted intra-/extra-peak 
in Figure 4C was lower by 12% and broader by 4 ms com-
pared to ground truth. This, however, did not affect the ac-
curacy in detecting the myelin peak. The MWF map that 
was calculated by the suggested method perfectly matched 
the ground truth MWF map at SNR ≥ 60 as presented in 
Figure 3C, whereas at SNR of 40 it underestimated the 
two-compartment tissue (by factor of ~1/2) and misidenti-
fied the 0.2 myelin fraction in the three-compartment tis-
sue (light-orange tissue in Figure 4). The MWF maps that 
were calculated using the voxel-wise NNLS fitting method 
are presented in Figure 5, exhibiting maps of lower quality. 
The map at SNR = 60 shows a successful reconstruction of 
the myelin fraction in the single- and two-component tis-
sue, together with a minor ~5% myelin overestimation in 
the three-compartment tissue. This fitting approach, how-
ever, misidentified the three-compartment tissue with 0.1 
myelin fraction and all the lesioned voxels. At SNR = 25, 
both methods presented incorrect reconstruction.
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4.2  |  Experimental mcT2 phantom

Representative high-resolution T2-weighted images of the 
two-compartment phantoms are presented in Figure 6A 
wherein each T2 compartment is reflected as a different 
grayscale level. The figure shows the different phases of 
the experiment in which 1 mm tubes are gradually added 

to the holding tube, producing ground-truth short T2 frac-
tions of 0, 0.26, 0.44, and 0.66, denoted as MWF. Fitted 
MWF are shown versus the actual fractions in Figure 6B, 
producing a linear correlation with p < .01 and r square 
of 0.99. Results for the three-compartment phantom are 
presented in Figure 6C,D. Baseline scan included only 2 
T2 compartments, 51 and 80 ms, after which short T2 tubes 

F I G U R E  4   mcT2 fitting of numerical 
MESE phantom. (A–E) Fitted T2 
distributions, i.e., spectra (dotted orange 
line), versus the ground truth (solid 
blue line) from noisy simulated MESE 
signals (SNR 60) showing excellent 
reconstruction of 1, 2, and 3 subvoxel 
compartments. T2 distributions are 
marked with matching segment colors as 
indicated

F I G U R E  5   Myelin water fraction 
maps estimations of numerical MESE 
phantom. Voxel-wise comparison of the 
reconstructed MWF values calculated 
with the proposed data-driven mcT2 
algorithm and conventional voxel-wise 
non-negative least squares fitting.24,36 
Prior to the reconstruction, white 
Gaussian noise was added to the signals at 
varying SNR levels, and random T2 values 
in a range of ±20% from the true T2 values 
were simulated within each segment. 
Error maps were calculated as the 
absolute difference between each map and 
the ground truth MWF map in Figure 3. 
MWF, myelin water fraction
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were gradually added (small black circles), producing 
short T2 fractions of 0, 0.02, 0.04, 0.06, 0.08, 0.10, and 0.16 
denoted as MWF. Fitted MWF are shown versus actual 
fractions in Figure 6 D, indicating high linear correlation 
with p < .001 and r square of 0.99. Unlike Figure 6B, this 
correlation graph is based on a more complex structure 
with both 2 and 3 T2 compartments. Both phantom de-
signs produced correct baseline values, crossing the origin 
with no apparent bias.

4.3  |  mcT2 of in vivo brain data

Figure 7 presents mcT2 analysis of 3 WM segments: GCC, 
SCC, and left forceps minor. To validate repeatability, scan 
was repeated 3 consecutive times. MWF values for the left 
forceps minor GCC and SCC ranged between 10%–16%, 
5%–12%, and 8%–14%. Average and SD MWF values are 
presented for each segment in Table 2. These values dem-
onstrate an overlapping range of MWF values with similar 
means and relatively low SDs of 1.4% (GCC), 0.5% (SCC), 
and 1.0% (left forceps minor) across scans. The remaining 
T2 spectrum (i.e., at T2 > 40) was also consistent between 
scans, producing a similar geometric mean (intra-/extra-
axonal water T2) and SDs (Table 2). The average single T2 
values within the segments were almost identical between 
the 3 scans (GCC = 49.9 ± 0.8 ms; SCC = 57.2 ± 2.1 ms; 
left forceps minor = 52.9 ± 0.8  ms), except for the sec-
ond SCC scan for which values were lower by almost 4 ms 

compared to the other 2 scans. Figure 8 shows whole-WM 
MWF maps that were obtained using the data-driven and 
the standard voxel-wise NNLS fitting algorithms. The 
data-driven approach produced a smoother MWF pattern 
compared to the standard voxel-wise approach, which ex-
hibited a significant number of voxels for which the fit-
ting process failed to identify any myelin (i.e., WM voxels 
indicating 0 value).

5   |   DISCUSSION

Reliable mcT2 analysis is highly challenging due to the 
large ambiguity in the mcT2 search space, particularly 
when avoiding prior assumptions regarding the number 
or relaxation times of each compartments, leading to in-
consistency of MWF value across different techniques.23 
This study introduces a new data-driven approach which 
starts by analyzing data from multiple voxels to extract 
spatially global mcT2 motifs and only then uses these 
to locally analyze the signal at each voxel. This pre-
processing learning stage promotes convergence while 
maintaining the sensitivity to subtle subvoxel changes. 
It assumes that voxels from a specific tissue segment 
contain a finite number of microstructural features 
that can be modeled using a finite set of mcT2 motifs 
and thus does not require imposing a fixed number of 
T2 components or distributions. The presented global-
to-local profiling of the tissue dramatically reduces the 

F I G U R E  6   Validation of the new mcT2 fitting algorithm on physiological subvoxel phantoms. (A,C) High-resolution scans of two- and 
three-compartment phantoms (FOV = 5 mm2) were used as ground truth for the subvoxel compartmentation. Each scan was performed 
at increased fractions of the short T2 compartment, resembling the brain MWF. (A) Two-compartments phantom: T2 of 11 and 60 ms for 
modeling myelin water (dark-gray circles) and intra-/extra-axonal water pools (light-gray background). (C) Three-compartment phantom: 
T2 of 11, 51, and 80 ms for modeling myelin water (black circles), intra-axonal (dark-gray background), and extra-axonal (light-gray circles) 
water pools. This unique phantom design provided the true ground truth fraction of the short T2 compartment. Experimental mcT2 signals 
were acquired by capturing the entire phantom within a single voxel using a series of low-resolution scans (Nslices = 9) (see Supporting 
Information Figure S1) with varying slice offsets. Acquired data were analyzed using the suggested mcT2 algorithm. (B,D) Correlation 
between fitted and ground truth short T2 fractions, exhibiting an excellent agreement with r squares of 0.99, 0.99 and p values of .01, < .001 
for the two- and three-compartment phantoms, respectively. Error bars indicate SDs of short T2 fractions across different slices
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number of potential solutions, thereby addressing the 
inherent ill-posedness of mcT2 analysis. Unlike other 
data-driven approaches, which jointly estimate spectra 
of several voxels,37 or those which utilize information 
across the entire image (such as the recent method pro-
posed by Slator et al.38), the proposed method solves the 
mcT2 problem on a voxel-by-voxel basis using a typical 
linear matrix form (Equation 3). We therefore consider 
our technique a voxel-based approach. Its accuracy 
was demonstrated on a numerical phantom using a 
unique phantom design (with known ground truth) and 
in vivo on WM brain segments. Notwithstanding the 
promising results, further investigations are required 
to benchmark this approach and compare it to existing 
techniques.

5.1  |  Novelty of the suggested 
mcT2 algorithm

The suggested data-driven approach introduces 3 novel 
strategies for tackling the ambiguity in the mcT2 space. 
First, contrary to traditional approaches that describe the 
signals as a weighted combination of single-T2 signals, it 
models them as a weighted combination of mcT2 motifs. 
This paradigm shift is beneficial for describing tissues 
based on realistic building blocks, each exhibiting a dif-
ferent microstructural compartmentation. Second, its 
method introduces a novel preprocessing stage in which 
global mcT2 motifs are derived from the anatomy and 
then used to locally analyze each voxel. This global-to-
local strategy is highly efficient in reducing the number 

F I G U R E  7   Repeatability of the 
new mcT2 algorithm on in vivo brain 
data. Parametric maps of white matter 
segments from 3 consecutive scans of the 
same subject were used to test interscan 
stability of MWF values. (A–D) MWF 
maps of genu of corpus callosum. (E–
H) MWF maps of splenium of corpus 
callosum. (I–K) MWF maps of the left 
forceps minor. MWF values are presented 
with the same color scale overlaid on a T2 
map (gray scale)

T A B L E  2   Distribution of mcT2 values estimated using the suggested algorithm from 3 consecutive scans of the same subject

WM segment GCC SCC Left forceps minor

Scan No. MWF (%)
IET2 
(ms) T2 (ms) MWF (%)

IET2 
(ms) T2 (ms)

MWF 
(%)

IET2 
(ms) T2 (ms)

1st 9.5 ± 1.7 63.4 ± 0.9 50.5 ± 1.4 14.1 ± 0.6 80.4 ± 0.2 58.8 ± 3.9 8.6 ± 0.9 64.1 ± 1.8 52.9 ± 1.7

2nd 10.1 ± 1.0 63.3 ± 1.2 49.1 ± 1.5 14.0 ± 0.4 75.7 ± 0.2 54.8 ± 2.0 8.2 ± 1.0 64.4 ± 1.9 52.1 ± 1.9

3rd 10.2 ± 1.4 63.5 ± 1.1 50.1 ± 1.5 14.3 ± 0.6 78.6 ± 0.3 58.2 ± 2.3 7.8 ± 1.1 63.5 ± 1.7 53.7 ± 2.3

Abbreviations: GCC, genu of corpus callosum; IET2, intra-/extra-axonal water T2 (mean ± SD); MWF, myelin water fraction (mean ± SD); SCC, splenium of 
corpus callosum; T2, signal T2 value (mean ± SD); WM, white matter.



2532  |      OMER et al.

of possible solutions. In contrary to previous approaches 
for which all mcT2 configurations participate in the fit-
ting process, the proposed strategy focuses the optimizer 
to identify the subset of mcT2 motifs that have the high-
est compatibility with the measured data. This reduces 
the chance of converging to unrealistic solutions, even 
if they present higher fitting accuracy at the pixel level. 
Third, the method is modular in a sense that it could eas-
ily be expanded to higher number of subvoxel compart-
ments or focused at specific T2 ranges, thereby making it 
applicable to other tissues and pathologies. For example, 
modeling the cerebral spinal fluid compartment by add-
ing a fourth, long T2 compartment or using a dictionary 
focused on higher T2 values to probe the gray matter 
compartmentation.

5.2  |  Findings of the current study

The numerical simulations point out 2 major strengths of 
the suggested method. First, the successful reconstruction 
of spectra with 1, 2, and 3 T2 compartments indicates that 
this data-driven approach can identify the correct num-
ber of T2 components without prior assumptions. This is 
particularly notable when analyzing voxels with only 1 T2 
component. In these voxels, the method did not fall short 
like classical fitting algorithms, which tend to improve 
accuracy by overfitting the signal to a larger number of 
components. Instead, it correctly identified the number 
of components and avoided the ambiguity in the signal 
space. Secondly, the perfect reconstruction at SNR of 60 
and above demonstrates its robustness to noise. Such level 
of robustness was superior to the implemented voxel-wise 
NNLS fitting algorithm and comparable with the reported 
state-of-the-art mcT2 analysis methods.12,20,39-41 More im-
portantly, it implies the clinical potential of the suggested 
method.

In vivo validation of mcT2 fitting is challenging due 
to lack of ground truth. Correlations to histology were 
shown to provide some insight into microstructural fea-
tures but are limited.4 To generate ground truth data, we 
designed a unique multi-T2 phantom with 2 distinct length 
scales and having both subvoxel morphology and internal 
modularity. Its dimensions were carefully selected to en-
able a low-resolution scan for which the entire phantom 
is captured in a single voxel (voxel size of 5 mm2), and 
a high-resolution scan that reflects its internal structure 
(voxel size of 0.15 mm2) and provides ground truth for 
the T2 values and relative fraction of each compartment. 
The global-to-local analysis requires a minimal number of 
voxels within the analyzed tissue segment to identify the 
global mcT2 motifs. We found this number to be around 
100 voxels to achieve reliable profiling of the anatomy.

The modularity of the phantom design could be bene-
ficial for modeling biological processes occurring at sub-
voxel levels. In this study, we used this ability to model 
myelination levels in the WM based on two-  and three-
compartment tissue model, showing high correlation be-
tween estimated and actual short-T2 fractions. Moreover, 
the method was able to select the true number of com-
partments in 1, 2, or 3 compartments voxels without as-
suming a prior tissue compartmentation. This was seen in 
both phantom designs, implying the methods’ reliability, 
particularly in the three-compartment phantom where 7 
different levels of short T2 fractions were successfully re-
covered. Despite the accurate MWF estimation, we should 
remember that our phantom design does not consider in-
tercompartmental water exchange that may impact MWF 
quantification.3 Hence, future work needs to incorporate 
inter-compartmental exchange into the mcT2 dictionary 
simulations. The repeatability of the suggested approach 
was tested on 3 consecutive brain scans performed on 
the same subject in 1 session, producing consistent MWF 
values for each WM segment that coincide with values 

F I G U R E  8   Comparison of whole-
white matter MWF maps generated 
using the proposed data-driven (left) and 
standard voxel-wise non-negative least 
squares fitting algorithm24,36 (right). The 
data-driven preprocessing step affords 
improved stability and significantly fewer 
fitting errors
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reported in the literature.41 Lastly, a proof-of-concept my-
elin mapping of the entire WM showed improved MWF 
quantification compared to standard voxel-wise NNLS fit-
ting algorithm.36

5.3  |  Clinical applicability

The subvoxel imaging ability of the suggested data-driven 
technique may serve as basis for several clinical applica-
tions, mainly for myelodegenerative diseases like multi-
ple sclerosis, Alzheimer disease, and neuromyelitis,41 for 
which a subvoxel information could improve the assess-
ment of disease state compared to conventional contrast-
weighted images. Another clinical use is for tracking 
changes in brain lipids content in aging-related condi-
tions,42 early detection of fat infiltration in muscle dystro-
phies,43,44 accumulation of fat in the liver,45 fat necrosis in 
breast tissue,46 or characterization of the internal compo-
sition of cancerous tumors as shown in Ref.47. The ability 
to visualize these changes could potentially uncover sub-
tle microstructural changes that are currently detectable 
only postmortem.

5.4  |  Study limitations

Water exchange between microenvironments, such as 
the intra-/extracellular spaces, exists and may impact 
MWF quantification.3 The suggested method, however, 
as well as similar NNLS-based methods, assume a slow 
exchange regime in which intercompartmental exchange 
occurs at slower time scales than the T2 relaxation time.15 
According to current reports, this assumption is valid in 
the WM, where the intraaxonal mean residence time are 
in the order of 100 s of ms48 Because this assumption is not 
generally sustained, exchange might bias subvoxel analy-
sis, requiring to expand our tissue model to incorporate 
exchange, for example, using Bloch-Torrey equations for 
2 multi-compartment relaxation dynamics.49

For a successful reconstruction, the presented method 
needs to be applied on a single WM segment consisting of 
voxels with similar compartmentation. For this reason, in 
vivo MWF maps (e.g., in Figure 7) are shown for specific WM 
segments. To map the entire WM, the method should be ap-
plied consecutively, each time on data from a different WM 
segment, and only then combined to cover the entire WM. 
This limitation could be circumvented by analyzing multiple 
WM segments at the same time using parallel computing.

Modeling the internal structure of biological tissues 
is complex and may require more than 3 subvoxel com-
partments. Expansion of the suggested model to 4 or more 
compartments is possible but will dramatically increase 

the size of the mcT2 dictionary, requiring stronger com-
putation power than available on a standard personal 
computer. Another enhancement could be to expand 
the dynamic range and resolution of the T2 space to in-
clude denser T2 grids and improve the tissue modeling. 
Nevertheless, the use of such parsimonious dictionaries, 
which are tailored to the tissue in question, is common 
and has shown useful for mcT2 analysis.18

6   |   CONCLUSION

This work presents a new data-driven approach for mcT2 
analysis. The approach employs global statistical correla-
tions to identify dominant mcT2 motifs, which are then 
used to constrain local analysis at the voxel level, while 
laying minimal a priori assumptions on the tissue micro-
structure. T2 relaxation curves were modeled using the 
EMC algorithm, ensuring stability across scanners and 
scan settings. This choice can be generalized to other signal 
models such as extended phase graph,39 multiexponential 
decay, or MR fingerprinting.21 Our findings on numerical 
and physical phantoms demonstrate the accuracy of the 
proposed mcT2 analysis. In vivo results demonstrate that 
MWF maps derived using this approach are repeatable and 
consistent with literature, implying its potential for MWI. 
No less important, T2 signals can be quantified within a 
clinical timescale, making the presented technique ap-
plicable for clinical applications. Full source code can be 
downloaded at https://github.com/NBE-LAB/MCT2.git.
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