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Abstract
Purpose: Multicomponent	 analysis	 of	 MRI	 T2	 relaxation	 time	 (mcT2)	 is	 com-
monly	used	for	estimating	myelin	content	by	separating	the	signal	at	each	voxel	
into	its	underlying	distribution	of	T2	values.	This	voxel-	based	approach	is	chal-
lenging	due	to	the	large	ambiguity	in	the	multi-	T2	space	and	the	low	SNR	of	MRI	
signals.	Herein,	we	present	a	data-	driven	mcT2	analysis,	which	utilizes	the	statis-
tical	strength	of	identifying	spatially	global	mcT2	motifs	in	white	matter	segments	
before	deconvolving	the	local	signal	at	each	voxel.
Methods: Deconvolution	is	done	using	a	 tailored	optimization	scheme,	which	
incorporates	the	global	mcT2	motifs	without	additional	prior	assumptions	regard-
ing	the	number	of	microscopic	components.	The	end	results	of	this	process	are	
voxel-	wise	myelin	water	fraction	maps.
Results: Validations	 are	 shown	 for	 computer-	generated	 signals,	 uniquely	 de-
signed	subvoxel	mcT2	phantoms,	and	in	vivo	human	brain.	Results	demonstrated	
excellent	 fitting	accuracy,	both	for	the	numerical	and	the	physical	mcT2	phan-
toms,	exhibiting	excellent	agreement	between	calculated	myelin	water	fraction	
and	ground	truth.	Proof-	of-	concept	in	vivo	validation	is	done	by	calculating	my-
elin	water	fraction	maps	for	white	matter	segments	of	the	human	brain.	Interscan	
stability	of	myelin	water	fraction	values	was	also	estimated,	showing	good	cor-
relation	between	scans.
Conclusion: We	conclude	 that	 studying	global	 tissue	motifs	prior	 to	perform-
ing	voxel-	wise	mcT2	analysis	stabilizes	the	optimization	scheme	and	efficiently	
overcomes	the	ambiguity	in	the	T2	space.	This	new	approach	can	improve	my-
elin	water	 imaging	and	 the	 investigation	of	microstructural	compartmentation	
in	general.
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1 	 | 	 INTRODUCTION

Biological	tissues	have	a	complex	microstructure,	which	
is	challenging	to	probe	in	vivo.	Notwithstanding	its	high	
clinical	value,	MRI	is	limited	in	visualizing	tissues	micro-
structure	 due	 to	 a	 hard	 limit	 on	 achievable	 resolutions.	
Recent	studies	have	shown	that	this	limitation	can	be	par-
tially	circumvented	by	modeling	the	MRI	signal	as	con-
sisting	of	several	water	pools,	each	residing	in	a	distinct	
magnetochemical	environment.1	The	measured	MRI	sig-
nal	is	thus	considered	to	reflect	a	spatiotemporal	average	
over	several	water	pools	and	over	time.	In	tissues	where	
microstructural	order	exists,	it	is	possible	to	identify	a	fi-
nite	number	of	specific	water	pools	(i.e.,	tissue	compart-
ments),	 each	 producing	 a	 signal	 that	 is	 proportional	 to	
the	 relative	 amounts	 of	 water	 in	 that	 compartment.	 By	
deconvolving	the	signal	into	its	underlying	components,	
it	is	thus	possible	to	indirectly	probe	the	tissue’s	subvoxel	
compartmentation.	 An	 example	 of	 such	 ordered	 tissue,	
and	 the	 focus	 of	 this	 study,	 is	 the	 brain	 white	 matter	
(WM).	This	tissue	is	typically	modeled	to	have	3	distinct	
water	pools:	 intra-	axonal	water,	extra-	axonal	water,	and	
water	 that	 reside	 between	 myelin	 sheaths.1	 Estimating	
the	relative	myelin	water	fraction	(i.e.,	myelin	water	im-
aging	[MWI]2,3)	is	of	the	high	interest	because	it	reflects	
the	local	myelin	content4,5—	a	valuable	biomarker	for	my-
elodegenerative	disorders6,7	and	neuronal	developmental	
processes.8,9

An	 effective	 approach	 for	 probing	 subvoxel	 compart-
ments	 is	 multicomponent	 analysis	 of	 MRI	 transverse	T2	
relaxation	 time	 (mcT2).10–	12	This	 approach	 leverages	 the	
fact	that	T2	relaxation	times	vary	between	compartments	
and	also	that	its	spectral	profile	(T2	spectrum)	changes	in	
presence	of	pathology.3	In	the	case	of	WM,	mcT2	is	based	
on	 the	 difference	 in	 T2	 between	 water	 pool	 that	 reside	
between	 myelin	 sheaths	 (1–	40  ms)	 and	 the	 extra-	/intra-	
water	pools	(>50 ms).2,3	Therefore,	when	interpreting	the	
T2	spectrum	of	WM	voxel,	the	relative	amount	of	myelin	
water	can	be	estimated	by	dividing	the	area	under	the	pool	
with	 the	 shortest	T2	 by	 the	 area	 of	 the	 entire	 spectrum.	
This	ratio	is	known	as	myelin	water	fraction	(MWF).13,14	
Applications	mcT2	analysis	have	already	been	shown,	for	
example,	in	multiple	sclerosis,	where	myelin	loss	may	be	
detected	through	a	reduction	in	the	short	T2	component,15	
or	in	Alzheimer	disease,	where	demyelination	was	found	
to	correlate	with	cognitive	decline.16

The	most	efficient	pulse	sequence	for	extracting	mcT2	
data	 is	 the	 classical	 Hahn	 spin	 echo.	 This	 acquisition	
scheme,	however,	 involves	extensive	scan	times,	making	
rapid	 multi-	echo	 spin	 echo	 (MESE)	 protocols	 the	 most	
practical	 in	 vivo	 alternative.	 Other	 approaches	 for	 mcT2	
use	fast	multi-	echo	acquisition	schemes,	which	combine	
multiple	 gradient	 echoes	 per	 spin	 echo,17	 multicompo-
nent	driven	equilibrium	single	pulse	observation	of	T1	or	
T2,18,19	 and	 MR	 fingerprinting.20,21	 Still,	 these	 gradient-	
echo	based	methods	have	not	supplanted	the	established	
multi-	spin	echo	methods	for	mcT2	relaxometry,22,23	mainly	
due	to	their	reduced	T2	encoding	efficiency.

Traditionally,	 mcT2	 analysis	 of	 MESE	 data	 considers	
the	 signal	 to	 be	 a	 weighted	 sum	 of	 mono-	exponential	
decay	curves,	allowing	the	use	of	discrete	Fredholm	inte-
gral	equation	(i.e.,	inverse	Laplace	transforms)	for	produc-
ing	the	T2	spectrum:

Here,	S	is	the	measured	signal	at	a	given	voxel;	ti	is	a	dis-
crete	time	axis	ranging	from	the	first	to	echo	train	length	
time	points;	M	is	the	number	of	signal	components	asso-
ciated	with	tissue	compartments,	wm	and	T2,m	are	the	am-
plitude	and	relaxation	time	of	component	m,	respectively;	
and	η	 is	a	noise	 term.	A	straightforward	solution	of	 this	
problem	can	be	achieved	using	nonnegative	least	squares	
(NNLS)–	fitting	algorithm.24	Several	improvements	of	the	
basic	NNLS	approach	have	been	suggested,	mostly	by	add-
ing	regularization	terms	to	stabilize	the	fitting	process	and	
by	modeling	the	T2	spectrum	as	a	discrete	rather	than	con-
tinuous	series	of	values.25,26	Other	techniques	assume	an	
a	priori	fixed	number	of	2	or	3	compartments	for	the	WM	
or	exploit	spatial	correlations	between	adjacent	voxels.27,28	
Notwithstanding	the	advantages	of	the	above	techniques,	
they	 produce	 different	 values,	 which	 moreover	 vary	 be-
tween	 scanner	 and	 scan	 settings,	 leading	 to	 a	 lack	 of	 a	
gold	 standard	 MWI	 technique.12,23	The	 key	 challenge	 in	
this	case	 is	 the	 inherent	ambiguity	of	 the	multiparamet-
ric	mcT2	space,	which	has	a	potentially	large	number	of	
possible	microstructural	configurations	that	can	match	a	
certain	 experimental	 decay	 curve.	The	 result	 is	 a	 highly	
underdetermined	 and	 ill-	posed	 problem	 whose	 solution	
suffers	 from	 non-	uniqueness	 and	 sensitivity	 to	 noise.29	
Regularization	alleviates	some	of	the	ill-	posedness	of	the	
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problem;	however,	it	does	not	ensure	convergence	or	va-
lidity	of	the	ensuing	solution.

In	 this	 study,	 we	 introduce	 a	 new	 mcT2	 approach,	
which	employs	a	statistical	preprocessing	stage	to	identify	
spatially	 global	 mcT2	 motifs	 of	 the	 tissue.	 These	 motifs	
consist	of	a	subset	of	mcT2	patterns,	which	are	common	
to	the	brain	segment	being	analyzed.	Once	identified,	the	
motifs	are	used	to	locally	analyze	the	signal	at	each	voxel	
while	 still	 imposing	 standard	 regularization	 constraints.	
Eventually,	each	voxel	is	associated	with	a	unique	T2	spec-
trum	and	MWF	value.	The	statistical	power	produced	by	
this	data-	driven	approach	endows	the	whole	process	with	
additional	 robustness,	 which	 stabilizes	 the	 voxel-	wise	
optimization	scheme.	Another	strength	of	 this	approach	
stems	from	the	use	of	the	echo-	modulation	curve	(EMC)	
technique.30–	32	 By	 incorporating	 the	 exact	 scan	 settings	
and	 protocol	 implementation	 into	 its	 signal	 model,	 this	
technique	is	able	to	overcome	the	contamination	of	MESE	
signals	by	stimulated	and	indirect	echoes	and	produce	ac-
curate	T2	values	that	are	reproducible	across	scanners	and	
scan	 settings.31	 The	 accuracy	 of	 the	 proposed	 mcT2	 ap-
proach	is	demonstrated	on	numerical	and	physical	phan-
toms,	followed	by	feasibility	of	applying	this	technique	on	
WM	brain	tissue	in	vivo.

2 	 | 	 THEORY

Multicomponent	T2	decay	curves	consist	of	a	 linear	com-
bination	of	single	T2	signals	originating	from	microscopic	
subvoxel	 compartments.	 Previous	 studies	 have	 shown	
that	 tissues	 with	 ordered	 internal	 structure	 can	 be	 mod-
eled	using	a	discrete	and	finite	set	of	compartments	with	
distinct	T2	values.12,28	Accordingly,	we	adopt	here	a	com-
mon	model	for	myelinated	WM	tissue	consisting	of	up	to	
3	signal	sources:	(i)	water	trapped	between	myelin	sheaths	
(fast-	relaxing	component),	(ii)	intra-	axonal	water,	and	(iii)	
extra-	axonal	 water.33	 The	 new	 mcT2	 signal	 analysis	 ap-
proach	suggested	herein	is	 furnished	with	several	unique	
features.	First,	unlike	 traditional	approaches	 that	analyze	
data	 from	 a	 single	 voxel,	 we	 start	 by	 identifying	 regional	
mcT2	motifs	 from	an	entire	brain	segment	and	only	then	
focus	on	deconvolving	the	signal	from	each	voxel.	Secondly,	
we	allow	the	existence	of	either	1,	2,	or	3	T2	compartments	
within	each	voxel	without	imposing	a	fixed	number	or	dis-
tribution	of	compartments.	Third,	we	do	not	rely	on	an	ex-
ponential	decay	but	instead	base	our	analysis	on	the	EMC	
signal	model.	Incorporating	this	model	into	(1)	yields:

The	 numerical	 term	 EMC	 (T2,m,	 tn)	 denotes	 a	 single	
T2	 decay	 curve	 out	 of	 a	 dictionary	 of	 possible	 curves.	
Equation (2)	can	be	cast	into	a	linear	matrix	form:

where	 S ∈ ℝ
ETL×1	 is	 the	 experimentally	 measured	 signal	

from	 a	 single	 voxel;	E ∈ ℝ
ETL×NT2	 is	 a	 simulated	 dictionary	

of	 single-	T2	 EMC	 signals	 expected	 to	 appear	 in	 the	 tissue;	
w ∈ ℝ

NT2×1	 is	 an	 unknown	 weights	 vector	 representing	 the	
relative	fractions	of	the	elements	in	E;	and	H ∈ ℝ

ETL×1	is	an	
unknown	noise	vector.	Straightforward	 inversion	of	 this	 sys-
tem	of	equations	is	computationally	intractable	due	to	the	large	
number	of	possible	combinations	and	noise	related	ambiguity,	
both	which	lead	to	unstable	solutions.	To	overcome	this	inher-
ent	ill-	posedness,	we	precede	the	solution	to	(3)	with	an	import-
ant	preprocessing	step	whereby	we	identify	a	basis	set	of	mcT2	
motifs	that	best	describe	the	entire	WM	segment.	This	subset	of	
mcT2	motifs,	which	were	generated	from	weighted	linear	com-
binations	of	the	single	T2	signals	in	E,	is	used	as	a	new	basis	to	
deconvolve	the	local	signal	within	each	voxel.

2.1	 |	 Identification of a basis set of global 
mcT2 signal motifs

Identifying	the	tissue-	specific	set	of	mcT2	motifs	is	based	on	
the	premise	that	only a finite number of microstructural con-
figurations exist within each tissue segment.	This	process	is	done	
in	2	stages:	first,	a	broad	mcT2	dictionary	is	generated	that	con-
tains	all	possible	permutations	of	T2	values	and	fractions.	This	
extensive	 set	 of	 configurations	 is	 then	 narrowed	 down	 to	 a	
small	and	finite	set	of	motifs	using	statistical	correlation	with	
the	measured	data.	We	note	that	separate	dictionary	should	be	
created	for	each	scan	settings.	This,	however,	does	not	pose	a	
serious	limitation	because	the	same	dictionary	can	be	used	for	
varying	FOVs	and	matrix	sizes	once	the	protocol	is	stabilized.

The	 full	 range	of	possible	microstructural	 tissue	con-
figurations	 is	 constructed	 by	 combining	 sets	 of	 single	
T2	 signals,	 logarithmically	 spaced	 between	 1	 …	 800  ms,	
thereby	 covering	 the	 physiological	 range	 of	 T2	 values	
(Figure	1(1)).	This	results	in	a	dictionary	of	mcT2	motifs	
� ∈ ℝ

ETL×NmcT2having	NmcT2	elements,	each	consisting	of	
linear	combination	of	single	T2	components	with	varying	
fractions	 (Figure	 1(2)).	 The	 transformation	 operator	 be-
tween	 single-		 to	 multi-	component	 dictionary	 is	 denoted	
by	a	coefficient	matrix	� ∈ ℝ

ETL×NmcT2	W∈ ℝ
NT2×Nmc,	with	

rows	representing	the	relative	fractions	of	each	single	T2	
component	(w)	and	the	columns	representing	all	possible	
combinations.	Put	in	matrix	form,	this	becomes:

(2)
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where	we	note	that	the	sum	of	weights	for	each	mcT2	com-
bination	needs	to	be	one,	and	that	fraction	values	are	in	the	
range	of	0	…	1.	The	number	of	elements	 in	the	mcT2	dic-
tionary	(NmcT2)	increases	dramatically	with	the	number	of	
T2	values	(NT2),	and	the	step	size	of	the	relative	fraction	of	
each	component	(Δω).	The	final	number	of	elements	can	be	
calculated	using	the	following	combinatorial	sum:

resulting,	for	example,	in	4 401 475	elements	for	1–	3	subvoxel	
compartments,	50	T2	values,	and	Δw	=	0.1.	 It	 is	 important	
to	emphasize	that	each	mcT2	dictionary	element	also	has	a	
single	T2	value	associated	with	 it,	 calculated	analytically	as	
the	weighted	average	of	the	single	T2	values	from	the	differ-
ent	subvoxel	compartments.	The	method	benefits	 from	the	
fact	that	some	mcT2	dictionary	elements	have	single	T2	values	
that	do	not	exist	in	the	analyzed	tissue	segment	(Figure	1(4)).	
By	performing	a	single	T2	fit	of	our	data,	we	narrow	down	

the	number	of	mcT2	elements	by	removing	all	dictionary	el-
ements	whose	single	T2	value	do	not	fall	within	a	10%	of	the	
range	of	T2	values	found	in	this	segment	(20%	was	used	for	
T2s < 30 ms)	(Figure	1(5)).	This	is	done	in	3	stages:	(i)	For	each	
single	T2	value	in	the	segment,	we	identify	a	range	of	±10%	
around	it	(20%	for	T2	≤	30);	(ii)	all	ranges	are	consolidated	into	
a	global	range	single	T2	values	appearing	in	the	tissue;	(iii)	we	
exclude	dictionary	elements	which	are	averaged	to	single	T2	
values	outside	this	set.	De	facto	this	step	removed	almost	half	
of	the	initial	number	of	mcT2	dictionary	elements.

Once	 an	 mcT2	 dictionary	 is	 available,	 the	 statistical	
correlation	between	each	dictionary	element	 (d)	and	ex-
perimental	signal	(e)	 is	calculated	based	on	the	L2	norm	
difference	between	each	pair	(Figure	2(1)).	This	provides	
a	pairwise	score	value	Pr(d,e),	which	is	normalized	to	[0	
…	1]	(Figure	2(2)).	This	score	is	subsequently	raised	to	the	
power	of	1	≤	β	<	104	to	prioritize	mcT2	motifs	that	have	
higher	probability	to	be	found	within	the	segment	(Figure	
2(3))—	even	if	they	match	well	with	only	a	small	number	
of	voxels	(e.g.,	for	modelling	focal	lesion	points	within	the	
analyzed	 segment).	 Finally,	 the	 score	 of	 each	 dictionary	
element	 (d)	 is	 summed	across	all	voxels	 (Figure	2(4))	 to	
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F I G U R E  1  A	flowchart	describing	
the	creation	of	a	data-	driven	dictionary	of	
mcT2	motifs	for	a	selected	brain	segment.	
(1)	Multi-	component	T2	signals	(mcT2)	
are	acquired,	whereas	the	corresponding	
scan	parameters	are	extracted	and	
inputted	into	the	echo-	modulation-	curve	
signal	model30	to	produce	a	dictionary	
of	simulated	single	T2	signals.	(2)	This	
dictionary	is	first	used	to	create	an	
expanded	dictionary	of	mcT2	motifs	by	
combining	1,	2,	and	3	single	T2	signals	
with	varying	weights	according	to	the	
physiological	range	of	microstructural	
tissue	configurations.	(3)	Experimental	
mcT2	data	is	denoised	using	a	PCA-	based	
denoising	scheme.34	(4)	Denoised	data	
from	a	specific	brain	region	(ROI)	is	used	
to	generate	a	map	of	single	T2	values.	(5)	
The	range	of	the	single	T2	values	within	
the	segment	is	used	to	filter	out	mcT2	
motifs	that	do	not	average	to	a	T2	value	
that	matches	to	the	segment’s	T2	range.	
mcT2,	multi-	component	T2	signals;	ROI,	
region	of	interest
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form	 a	 global,	 element-	specific,	 probability	 score	 Pr(d).	
We	note	the	important	role	of	the	β	parameter,	which	is	
to	ensure	that	mcT2	motifs	with	very	high	scores,	that	is,	
which	perfectly	match	a	small	number	of	the	voxels	in	the	
segment,	 will	 maintain	 their	 high	 score	 when	 summing	
the	 scores	 of	 all	 voxels.	 This,	 for	 example,	 can	 happen	
when	small	focal	pathology	appears	within	the	segment.

To	exclude	low	SNR	signal	points,	we	precede	these	cal-
culations	 by	 normalizing	 the	 signal	 (dividing	 by	 the	 first	
time	point)	and	truncating	data	points	at	the	tail	of	the	sig-
nal	below	a	0.1	threshold.	Excluding	low	SNR	data	points	
removes	any	bias	caused	by	Rician	noise	and	leaves	H	with	
only	 Gaussian	 noise	 distribution.35	 Following	 the	 calcula-
tion	of	all	scores,	a	segment-	specific	set	of	ℒmcT2	motifs	is	
selected	having	the	highest	scores,	that	is,	the	mcT2	dictio-
nary	elements	with	highest	probability	to	be	found	within	
the	 segment	 (Figure	 2(5)).	 Denoting	 this	 group	 of	ℒ	 ele-
ments	as	𝔼 ∈ ℝ

ETL×ℒ,	we	can	substitute	the	term	Ew	in	(3)	
and	express	the	signal	at	each	voxel	as	a	sum	of	mcT2	motifs:

where	𝕎 ∈ ℝ
ℒ×1	is	the	unknown	weights	of	each	motif	in	�.

2.2	 |	 Calculating	each	voxel’s	mcT2	content

To	solve	(6),	we	cast	it	as	minimization	problem	with	
the	following	objective	function:

Here,	S∈ ℝ
ETL×1	is	the	measured	signal,	and	λTik,	λL1	>	0	

are	Tikhonov	and	L1	regularization	weights.	The	Tikhonov	
regularization	is	added	to	guarantee	a	well-	posed	problem,	
and	the	L1	regularization	is	added	in	order	to	favor	sparse	
T2	distributions.	The	regularization	weights	of	the	objective	
function	are	determined	based	on	an	exhaustive	search	in	
the	 range	 10−7…10+7,	 ensuring	 optimal	 performance	 and	
stability	(see	Table	1).	The	last	2	constraints	ensure	that	the	
solution	vector	�	is	nonnegative	and	forces	its	sum	to	be	
unity.	 Equation  (7)	 was	 solved	 using	 MatLab’s	 quadprog	
solver	 (version	 2019b)	 for	 quadratic	 objective	 functions	
with	 linear	 constraints	 (MathWorks,	 Natick,	 MA).	 This	
solver	finds	a	minimum	for	problems	specified	by	the	stan-
dard	form	of	quadratic	programming:

(6)S = �� +H

(7)
argminΦ

�

=
1

2
‖��−S‖22 +�Tik ‖�‖22 +�L1‖�‖1

s. t.�i≥0,
�

�i=1.

F I G U R E  2  The	process	of	identifying	
spatially	global	mcT2	motifs	of	myelinated	
tissues.	(1)	A	correlation-	based	score	is	
computed	between	each	experimental	
signal	“e”	and	mcT2	dictionary	element	
“d”	to	produce	a	set	of	probability	scores	
Pr(d,e).	(2,3)	Scores	are	normalized	and	
raised	by	power	of	β	to	prioritize	mcT2	
motifs	according	to	their	probability	to	
be	found	within	the	segment	while	still	
retaining	selected	motifs	that	have	high	
correlation	with	only	a	small	number	
of	voxels.	(4)	Sum	the	scores	of	each	
dictionary	element	across	all	signals	to	
produce	a	global	score	Pr	(d)	for	each	
dictionary	element.	(5)	Select	a	finite	
group	of	ℒ	dictionary	elements	with	the	
highest	scores
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where	H ≽ 0	represents	a	semi-	positive	definite	matrix;	f	rep-
resents	a	linear	term;	and	x	denotes	a	vector	of	unknowns.	
To	use	this	quadratic	programming	solver,	we	rearrange	the	
terms	in	(7)	and	add	a	set	of	slack	variables.	These	steps	are	
described	in	detail	in	the	Supporting	Information	(S4).

MatLab’s	 (MathWorks,	 version	 2019b)	 quadratic	 pro-
gramming	solver	of	(8)	produces	a	solution	x	containing	
2×ℒ	 variables,	 out	 of	 which	 we	 are	 only	 interested	 in	
the	 first	ℒ,	 which	 represent	 the	 elements	 in	�.	 We	 re-
member	that	these	weights	are	used	to	extract	the	exper-
imental	signal	from	the	�	matrix	of	mcT2	motifs	(see	(6)).	
Recovering	the	actual	voxel-	specific	mcT2	spectrum,	that	
is,	the	weights	vector	w	from	(3),	is	performed	in	2	steps.	
First,	we	extract	Wℒ ∈ ℝ

NT2×ℒ	by	identifying	the	columns	
in	W,	 the	 coefficient	 matrix	 containing	 all	 possible	 per-
mutations	of	multi-	T2	fractions	associated	with	the	ℒ	se-
lected	mcT2	motifs.	We	then	multiply	each	column	in	Wℒ	
by	its	matching	weight	in	�	and	sum	across	columns	to	
obtain	 the	 final	weights	vector	w.	This	 step	 is	 similar	 to	
calculating	w =Wℒ�.

MatLab’s	 (MathWorks)	 quadratic	 programming	 al-
lows	 input	 of	 an	 initial	 solution	 to	 the	 optimization	
process.	To	utilize	this	feature,	we	perform	2	iterations	
of	the	optimization	procedure.7–	20	The	first	is	preceded	
by	a	preprocessing	step	for	which	a	2D	moving	average	
window	of	3 × 3	voxels	is	applied	to	all	images	in	order	
to	increase	SNR	on	expense	of	blurring	the	spatial	fea-
tures.	The	output	from	this	iteration	is	then	input	as	an	
initial	guess	to	the	second	iteration,	which	uses	the	orig-
inal	 images	 (without	 averaging),	 thereby	 retaining	 the	
original	spatial	resolution.

3 	 | 	 METHODS

3.1	 |	 Numerical phantom simulations

The	mcT2	signal	motifs	of	5	myelinated	tissues	and	1,	2,	and	
3	compartments	were	simulated	for	a	range	of	myelin	water	
fractions	of	0%–	20%	(T2	=	10–	40 ms)	and	intra-	/extracellular	
water	compartments	 (T2	=	50–	80 ms).	Figure 3	 illustrates	
the	numerical	phantom	design.	The	suggested	data-	driven	
mcT2	algorithm	was	applied	to	the	simulated	data	(param-
eters	values	are	detailed	in	Table	1	and	above).	To	estimate	
its	accuracy	when	using	standard	voxel-	wise	NNLS	fitting	al-
gorithm,	we	have	implemented	the	state-	of-	the-	art	regular-
ized	NNLS	inversion	algorithm	by	Provencher,36	which	was	
used	in	the	landmark	publication	by	Whittall	and	MacKay.24	
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Prior	to	the	analysis,	Gaussian	noise	at	SNR	of	200,	100,	60,	
40,	and	25	was	added	to	the	signal.	Next,	MWF	values	were	
calculated	from	the	reconstructed	spectra	by	summing	the	
area	under	 the	peak	 in	 the	short	T2	 range	 (0–	40 ms)2	and	
then	compared	between	both	methods.	The	sum	of	the	final	
weights	vector	was	normalized	to	1,	meaning	that	this	area	
directly	 reflected	 the	MWF	value.	The	exact	 set	of	param-
eters	that	was	used	for	the	voxelwise	NNLS	fitting	algorithm	
can	be	found	in	the	Supporting	Information	Data	S3.

3.2	 |	 Experimental phantom 
preparations

Two	 physical	 mcT2	 phantoms,	 consisting	 of	 2	 and	 3	
subvoxel	 compartments,	 were	 prepared.	 Each	 phantom	
consisted	of	a	varying	number	of	1 mm	tubes	that	were	
gradually	inserted	into	a	5 mm	tube.	The	dimensions	al-
lowed	the	entire	phantom	to	be	captured	within	a	single	
imaged	 voxel,	 and	 at	 the	 same	 time	 they	 enabled	 high-	
resolution	imaging,	which	provided	ground	truth	of	the	T2	
values	and	fractions	of	each	compartment	(see	Figure S1).	
Fourteen	1 mm	tubes	with	T2	=	11 ms	represented	my-
elin	water.	Six	1 mm	tubes	with	T2	=	80 ms	represented	

the	 extra-	axonal	 water	 pools.	 These	 were	 prepared	 by	
mixing	 MnCl2	 and	 double	 distilled	 water	 at	 different	
concentrations.	The	two	5 mm	holding	tubes	were	filled	
with	solutions	having	T2	=	60	and	51 ms	for	the	2	and	3	
compartments,	respectively.	Phantoms	were	scanned	in	a	
dynamic	manner	by	gradually	inserting	1 mm	tubes	into	
the	5 mm	holding	tubes	and	imaging	each	phase	of	 the	
phantom.	Eight	1 mm	tubes	(T2	=	11 ms)	were	inserted,	
1	at	a	time,	into	the	two-	compartment	holding	tube;	and	
twelve	1 mm	tubes	(T2	=	51	and	80 ms)	 into	 the	 three-	
compartment	 tube.	 The	 low-	resolution	 mcT2	 data	 of	
each	scan	served	as	input	for	the	mcT2	fitting	algorithm	
with	 the	 MWF	 calculated	 according	 to	 relative	 area	 of	
the	short-	T2	peak	(0–	40 ms)2.	Ground	truth	MWF	values	
were	calculated	from	the	corresponding	high-	resolution	
scans	 based	 on	 the	 relative	 area	 of	 the	 short	 T2	 tubes.	
Pearson	 correlation	 was	 calculated	 between	 the	 actual	
and	estimated	MWF	to	assess	the	statistical	correlation.

3.3	 |	 Phantom MRI scans

Phantom	MESE	scans	were	performed	on	9.4	Tesla	(Bruker	
BioSpec)	using	a	single	channel	 transceiver	coil.	A	series	

F I G U R E  3  Numerical	phantom	design	for	modeling	myelinated	brain	tissue.	A	series	of	simulated	mcT2	signals	motifs	were	produced	
based	on	clinical	MESE	protocol	parameters	and	arranged	in	a	2D	numerical	Shepp-	Logan	phantom	design.	(A)	The	simulated	tissue	
contains	5	ensembles	simulated	single	T2	signals	weighted	by	different	T2	fractions	associated	with	myelinated	brain	tissue	composition	
(exact	fractions	are	listed	within	the	figure).	(B)	2D	display	of	the	Shepp-	Logan	phantom	presenting	the	distribution	of	the	5	mcT2	motifs	
within	the	segment	with	different	colors.	Prior	to	analysis,	white	Gaussian	noise	was	added	to	the	numerical	signals	at	different	SNR	=	{200,	
100,	60,	40,	25}.	(C)	The	MWF	map	of	the	numerical	phantom	in	B.	MESE,	multi-	echo	spin	echo,	MWF,	myelin	water	fraction.
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of	scans	were	performed	with	varying	internal	configura-
tion	of	the	phantom,	each	involving	a	high-	resolution	scan	
(voxel	 size	 =	 156  ×  156	 µm2)	 and	 a	 low-	resolution	 scan	
(voxel	size	=	5 × 5	mm2).	Whereas	the	low-	resolution	scan	
captured	 the	 entire	 phantom	 within	 a	 single	 voxel	 and	
produced	a	genuine	mcT2	signal,	the	high-	resolution	scan	
provided	 reliable	 ground	 truth	 information	 about	 the	 T2	
values	within	each	compartment.	Phantoms	were	scanned	
at	several	configurations,	each	time	with	 increasing	 frac-
tion	of	the	short	T2	components	(see	Figure 5)	based	on	the	
relative	area	of	the	short	T2	capillaries	tubes.

To	further	increase	the	number	of	low-	resolution	slices,	
each	 scan	 was	 repeated	 9	 times	 with	 varying	 slice	 off-
sets,	 producing	 a	 total	 of	 81	 mcT2	 signals	 (black	 lines	 in	
Figure S1).	The	remaining	experimental	parameters	were	
Naverages	=	4,	TR	=	5000 ms,	TE	=	8,	16,	…,	240 ms	(NTE	=		
30),	 slice	 thickness	 =	 0.8  mm,	 acquisition	 bandwidth	 =	
50  kHz,	 and	 slice	 gap	 =	 150%.	The	 mcT2	 data	 was	 fitted	
using	a	dictionary	composed	of	50	single	T2	signals,	loga-
rithmically	spaced	between	1–	800 ms	and	fraction	resolu-
tion	of	Δω	=	0.05	for	T2	≤	40 ms	and	Δω	=	0.1	for	T2	>	40 ms	
This	 resulted	 in	 a	 dictionary	 of	 1  306  597	 mcT2	 motifs,	
which	were	narrowed	to	~600 000	elements	based	on	their	
single	T2	values.	Statistical	correlations	between	dictionary	
elements	and	each	pixel	signals	were	calculated	(Pr(d,e)),	
and	the	resulting	set	of	scores	was	normalized	and	raised	
by	a	power	of	β	=	102.	Scores	were	then	summed	across	all	
pixels	to	obtain	a	global	probability	score	(Pr(d)),	and	a	set	
of	ℒ	 =	 30	 dictionary	 elements	 with	 highest	 probabilities	
was	 selected	 as	 basis	 set	 of	 mcT2	 motifs	 (�).	Table	 1	 lists	
the	full	set	of	parameters	values.	Because	all	the	slices	are	
expected	to	produce	the	same	mcT2	spectra,	MWFs	of	each	
compartment	were	averaged	across	all	slices.

3.4	 |	 In vivo brain MRI scans

In	 vivo	 brain	 scans	 were	 performed	 on	 a	 3	 Tesla	 whole	
body	MRI	scanner	 (Prisma,	Siemens	Healthineers)	using	
a	 24-	channel	 head	 coil.	 Scans	 were	 performed	 according	
to	Helsinki	ethical	standards.	To	test	 the	mcT2	 fitting	re-
producibility,	3	identical	MESE	scans	were	performed	for	
the	 same	 subject	 during	 1	 scan	 session.	 The	 subject	 was	
a	31-	year-	old	healthy	male	with	normal	body	mass	index.	
Experimental	parameters	were	FOV	=	200	×	210 cm,	ma-
trix	 size	 =	 216  ×  180,	 NAVERAGE	 =	 1,	 TR	 =	 3000  ms,	 TE	
=	10,	20,	…,	200 ms	(NTE	=	20),	slice	 thickness	=	3 mm,	
and	acquisition	bandwidth	=	210 Hz/Px.	To	improve	data	
SNR,	an	image	denoising	step	was	applied	to	the	raw	im-
ages	 using	 the	 algorithm	 described	 in	 Ref.34	 Three	 WM	
segments	 were	 investigated:	 the	 genu	 corpus	 callosum	
(GCC),	splenium	of	corpus	callosum	(SCC),	and	a	left	for-
ceps	 minor	 segment	 containing	 201  227	 and	 475	 voxels,	

respectively.	Segments	data	were	analyzed	with	an	mcT2	
dictionary	containing	64	elements,	logarithmically	spaced	
between	1	and	800 ms,	and	fraction	resolution	of	Δω	=	0.05	
for	T2	<	40 ms	and	Δω	=	0.1	 for	T2	>	40 ms,	producing	
3,273,304	mcT2	motifs.	Initial	fitting	identified	the	specific	
range	of	single	T2	values	within	each	segment	used	it	to	ex-
clude	mcT2	motifs	that	do	not	fit	into	this	range.	Statistical	
correlations	 between	 simulated	 and	 experimental	 mcT2	
signals	(Pr(d,e))	were	normalized	and	raised	by	a	power	of	β	
=	104.	Global	probability	scores	Pr(d)	were	computed,	and	
a	set	of	mcT2	motifs	containing	ℒ	=	30	dictionary	elements	
with	highest	probabilities	was	selected.	Table	1	lists	the	full	
set	of	parameters	values.	To	compare	the	mcT2	content	at	
T2	 >	 40  ms,	 the	 geometric	 mean	 T2	 (intra-	/extra-	axonal	
water	T2)11	of	the	major	component	was	calculated	(mean	
on	a	logarithmic	T2	scale).	To	demonstrate	the	potential	of	
the	proposed	method	to	produce	whole-	brain	MWF	maps,	
the	suggested	data-	driven	algorithm	was	applied	on	the	en-
tire	 WM	 using	 the	 same	 mcT2	 dictionary	 and	 parameter	
set	 (last	 row	 in	 Table	 1).	 To	 appreciate	 the	 advantage	 of	
the	data-	driven	approach,	we	compared	the	resulting	map	
with	a	map	that	was	generated	using	the	standard	voxel-	
wise	NNLS	fitting	algorithm	by	Provencher.36

4 	 | 	 RESULTS

4.1	 |	 Numerical phantom results

Five	representative	mcT2	spectra	containing	1,	2,	and	3	sub-
voxel	components	of	a	numerical	phantom	are	 shown	 in	
Figure  4,	 compared	 with	 ground	 truth	 (dashed	 and	 solid	
lines,	respectively).	Excellent	reconstruction	was	achieved	
at	SNR	=	60	for	the	1,	2,	and	3	compartment	tissues,	as	well	
as	for	the	inflammated	tissue.	The	fitted	intra-	/extra-	peak	
in	Figure 4C	was	lower	by	12%	and	broader	by	4 ms	com-
pared	to	ground	truth.	This,	however,	did	not	affect	the	ac-
curacy	in	detecting	the	myelin	peak.	The	MWF	map	that	
was	calculated	by	the	suggested	method	perfectly	matched	
the	ground	truth	MWF	map	at	SNR	≥	60	as	presented	 in	
Figure	 3C,	 whereas	 at	 SNR	 of	 40	 it	 underestimated	 the	
two-	compartment	tissue	(by	factor	of	~1/2)	and	misidenti-
fied	the	0.2	myelin	fraction	in	the	three-	compartment	tis-
sue	(light-	orange	tissue	in	Figure 4).	The	MWF	maps	that	
were	calculated	using	the	voxel-	wise	NNLS	fitting	method	
are	presented	in	Figure 5,	exhibiting	maps	of	lower	quality.	
The	map	at	SNR	=	60	shows	a	successful	reconstruction	of	
the	myelin	fraction	in	the	single-		and	two-	component	tis-
sue,	 together	with	a	minor	~5%	myelin	overestimation	in	
the	three-	compartment	tissue.	This	fitting	approach,	how-
ever,	misidentified	the	three-	compartment	tissue	with	0.1	
myelin	fraction	and	all	the	lesioned	voxels.	At	SNR	=	25,	
both	methods	presented	incorrect	reconstruction.
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4.2	 |	 Experimental mcT2 phantom

Representative	high-	resolution	T2-	weighted	images	of	the	
two-	compartment	phantoms	are	presented	 in	Figure 6A	
wherein	each	T2	compartment	 is	 reflected	as	a	different	
grayscale	 level.	The	 figure	shows	 the	different	phases	of	
the	experiment	in	which	1 mm	tubes	are	gradually	added	

to	the	holding	tube,	producing	ground-	truth	short	T2	frac-
tions	 of	 0,	 0.26,	 0.44,	 and	 0.66,	 denoted	 as	 MWF.	 Fitted	
MWF	are	shown	versus	the	actual	fractions	in	Figure 6B,	
producing	a	linear	correlation	with	p <	.01	and	r	square	
of	0.99.	Results	 for	 the	 three-	compartment	phantom	are	
presented	in	Figure 6C,D.	Baseline	scan	included	only	2	
T2	compartments,	51	and	80 ms,	after	which	short	T2	tubes	

F I G U R E  4  mcT2	fitting	of	numerical	
MESE	phantom.	(A–	E)	Fitted	T2	
distributions,	i.e.,	spectra	(dotted	orange	
line),	versus	the	ground	truth	(solid	
blue	line)	from	noisy	simulated	MESE	
signals	(SNR	60)	showing	excellent	
reconstruction	of	1,	2,	and	3	subvoxel	
compartments.	T2	distributions	are	
marked	with	matching	segment	colors	as	
indicated

F I G U R E  5  Myelin	water	fraction	
maps	estimations	of	numerical	MESE	
phantom.	Voxel-	wise	comparison	of	the	
reconstructed	MWF	values	calculated	
with	the	proposed	data-	driven	mcT2	
algorithm	and	conventional	voxel-	wise	
non-	negative	least	squares	fitting.24,36	
Prior	to	the	reconstruction,	white	
Gaussian	noise	was	added	to	the	signals	at	
varying	SNR	levels,	and	random	T2	values	
in	a	range	of	±20%	from	the	true	T2	values	
were	simulated	within	each	segment.	
Error	maps	were	calculated	as	the	
absolute	difference	between	each	map	and	
the	ground	truth	MWF	map	in	Figure 3.	
MWF,	myelin	water	fraction
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were	 gradually	 added	 (small	 black	 circles),	 producing	
short	T2	fractions	of	0,	0.02,	0.04,	0.06,	0.08,	0.10,	and	0.16	
denoted	 as	 MWF.	 Fitted	 MWF	 are	 shown	 versus	 actual	
fractions	in	Figure	6 D,	indicating	high	linear	correlation	
with	p <	.001	and	r	square	of	0.99.	Unlike	Figure 6B,	this	
correlation	 graph	 is	 based	 on	 a	 more	 complex	 structure	
with	 both	 2	 and	 3	 T2	 compartments.	 Both	 phantom	 de-
signs	produced	correct	baseline	values,	crossing	the	origin	
with	no	apparent	bias.

4.3	 |	 mcT2 of in vivo brain data

Figure 7	presents	mcT2	analysis	of	3	WM	segments:	GCC,	
SCC,	and	left	forceps	minor.	To	validate	repeatability,	scan	
was	repeated	3	consecutive	times.	MWF	values	for	the	left	
forceps	 minor	 GCC	 and	 SCC	 ranged	 between	 10%–	16%,	
5%–	12%,	and	8%–	14%.	Average	and	SD	MWF	values	are	
presented	for	each	segment	in	Table	2.	These	values	dem-
onstrate	an	overlapping	range	of	MWF	values	with	similar	
means	and	relatively	low	SDs	of	1.4%	(GCC),	0.5%	(SCC),	
and	1.0%	(left	forceps	minor)	across	scans.	The	remaining	
T2	spectrum	(i.e.,	at	T2	>	40)	was	also	consistent	between	
scans,	producing	a	similar	geometric	mean	(intra-	/extra-	
axonal	water	T2)	and	SDs	(Table	2).	The	average	single	T2	
values	within	the	segments	were	almost	identical	between	
the	3	scans	(GCC	=	49.9	±	0.8 ms;	SCC	=	57.2	±	2.1 ms;	
left	 forceps	 minor	 =	 52.9	 ±	 0.8  ms),	 except	 for	 the	 sec-
ond	SCC	scan	for	which	values	were	lower	by	almost	4 ms	

compared	to	the	other	2	scans.	Figure 8	shows	whole-	WM	
MWF	maps	that	were	obtained	using	the	data-	driven	and	
the	 standard	 voxel-	wise	 NNLS	 fitting	 algorithms.	 The	
data-	driven	approach	produced	a	smoother	MWF	pattern	
compared	to	the	standard	voxel-	wise	approach,	which	ex-
hibited	a	 significant	number	of	voxels	 for	which	 the	 fit-
ting	process	failed	to	identify	any	myelin	(i.e.,	WM	voxels	
indicating	0	value).

5 	 | 	 DISCUSSION

Reliable	mcT2	analysis	is	highly	challenging	due	to	the	
large	ambiguity	 in	 the	mcT2	search	space,	particularly	
when	avoiding	prior	assumptions	regarding	the	number	
or	relaxation	times	of	each	compartments,	leading	to	in-
consistency	of	MWF	value	across	different	techniques.23	
This	study	introduces	a	new	data-	driven	approach	which	
starts	by	analyzing	data	from	multiple	voxels	to	extract	
spatially	 global	 mcT2	 motifs	 and	 only	 then	 uses	 these	
to	 locally	 analyze	 the	 signal	 at	 each	 voxel.	 This	 pre-
processing	 learning	stage	promotes	convergence	while	
maintaining	the	sensitivity	to	subtle	subvoxel	changes.	
It	 assumes	 that	 voxels	 from	 a	 specific	 tissue	 segment	
contain	 a	 finite	 number	 of	 microstructural	 features	
that	 can	 be	 modeled	 using	 a	 finite	 set	 of	 mcT2	 motifs	
and	thus	does	not	require	 imposing	a	 fixed	number	of	
T2	 components	 or	 distributions.	 The	 presented	 global-	
to-	local	profiling	of	the	tissue	dramatically	reduces	the	

F I G U R E  6  Validation	of	the	new	mcT2	fitting	algorithm	on	physiological	subvoxel	phantoms.	(A,C)	High-	resolution	scans	of	two-		and	
three-	compartment	phantoms	(FOV	=	5	mm2)	were	used	as	ground	truth	for	the	subvoxel	compartmentation.	Each	scan	was	performed	
at	increased	fractions	of	the	short	T2	compartment,	resembling	the	brain	MWF.	(A)	Two-	compartments	phantom:	T2	of	11	and	60 ms	for	
modeling	myelin	water	(dark-	gray	circles)	and	intra-	/extra-	axonal	water	pools	(light-	gray	background).	(C)	Three-	compartment	phantom:	
T2	of	11,	51,	and	80 ms	for	modeling	myelin	water	(black	circles),	intra-	axonal	(dark-	gray	background),	and	extra-	axonal	(light-	gray	circles)	
water	pools.	This	unique	phantom	design	provided	the	true	ground	truth	fraction	of	the	short	T2	compartment.	Experimental	mcT2	signals	
were	acquired	by	capturing	the	entire	phantom	within	a	single	voxel	using	a	series	of	low-	resolution	scans	(Nslices	=	9)	(see	Supporting	
Information	Figure S1)	with	varying	slice	offsets.	Acquired	data	were	analyzed	using	the	suggested	mcT2	algorithm.	(B,D)	Correlation	
between	fitted	and	ground	truth	short	T2	fractions,	exhibiting	an	excellent	agreement	with	r	squares	of	0.99,	0.99	and	p	values	of	.01,	<	.001	
for	the	two-		and	three-	compartment	phantoms,	respectively.	Error	bars	indicate	SDs	of	short	T2	fractions	across	different	slices
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number	 of	 potential	 solutions,	 thereby	 addressing	 the	
inherent	 ill-	posedness	 of	 mcT2	 analysis.	 Unlike	 other	
data-	driven	approaches,	which	jointly	estimate	spectra	
of	 several	 voxels,37	 or	 those	 which	 utilize	 information	
across	the	entire	image	(such	as	the	recent	method	pro-
posed	by	Slator	et	al.38),	the	proposed	method	solves	the	
mcT2	problem	on	a	voxel-	by-	voxel	basis	using	a	typical	
linear	matrix	form	(Equation 3).	We	therefore	consider	
our	 technique	 a	 voxel-	based	 approach.	 Its	 accuracy	
was	 demonstrated	 on	 a	 numerical	 phantom	 using	 a	
unique	phantom	design	(with	known	ground	truth)	and	
in	 vivo	 on	 WM	 brain	 segments.	 Notwithstanding	 the	
promising	 results,	 further	 investigations	 are	 required	
to	benchmark	this	approach	and	compare	it	to	existing	
techniques.

5.1	 |	 Novelty of the suggested 
mcT2 algorithm

The	 suggested	 data-	driven	 approach	 introduces	 3	 novel	
strategies	 for	 tackling	 the	 ambiguity	 in	 the	 mcT2	 space.	
First,	contrary	to	traditional	approaches	that	describe	the	
signals	as	a	weighted	combination	of	single-	T2	signals,	it	
models	them	as	a	weighted	combination	of	mcT2	motifs.	
This	 paradigm	 shift	 is	 beneficial	 for	 describing	 tissues	
based	on	 realistic	building	blocks,	 each	exhibiting	a	dif-
ferent	 microstructural	 compartmentation.	 Second,	 its	
method	introduces	a	novel	preprocessing	stage	in	which	
global	 mcT2	 motifs	 are	 derived	 from	 the	 anatomy	 and	
then	 used	 to	 locally	 analyze	 each	 voxel.	 This	 global-	to-	
local	 strategy	 is	highly	efficient	 in	 reducing	 the	number	

F I G U R E  7  Repeatability	of	the	
new	mcT2	algorithm	on	in	vivo	brain	
data.	Parametric	maps	of	white	matter	
segments	from	3	consecutive	scans	of	the	
same	subject	were	used	to	test	interscan	
stability	of	MWF	values.	(A–	D)	MWF	
maps	of	genu	of	corpus	callosum.	(E–	
H)	MWF	maps	of	splenium	of	corpus	
callosum.	(I–	K)	MWF	maps	of	the	left	
forceps	minor.	MWF	values	are	presented	
with	the	same	color	scale	overlaid	on	a	T2	
map	(gray	scale)

T A B L E  2 	 Distribution	of	mcT2	values	estimated	using	the	suggested	algorithm	from	3	consecutive	scans	of	the	same	subject

WM segment GCC SCC Left forceps minor

Scan No. MWF (%)
IET2 
(ms) T2 (ms) MWF (%)

IET2 
(ms) T2 (ms)

MWF 
(%)

IET2 
(ms) T2 (ms)

1st 9.5 ± 1.7 63.4 ± 0.9 50.5 ± 1.4 14.1 ± 0.6 80.4 ± 0.2 58.8 ± 3.9 8.6 ± 0.9 64.1 ± 1.8 52.9 ± 1.7

2nd 10.1 ± 1.0 63.3 ± 1.2 49.1 ± 1.5 14.0 ± 0.4 75.7 ± 0.2 54.8 ± 2.0 8.2 ± 1.0 64.4 ± 1.9 52.1 ± 1.9

3rd 10.2 ± 1.4 63.5 ± 1.1 50.1 ± 1.5 14.3 ± 0.6 78.6 ± 0.3 58.2 ± 2.3 7.8 ± 1.1 63.5 ± 1.7 53.7 ± 2.3

Abbreviations:	GCC,	genu	of	corpus	callosum;	IET2,	intra-	/extra-	axonal	water	T2	(mean	±	SD);	MWF,	myelin	water	fraction	(mean	±	SD);	SCC,	splenium	of	
corpus	callosum;	T2,	signal	T2	value	(mean	±	SD);	WM,	white	matter.
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of	possible	solutions.	In	contrary	to	previous	approaches	
for	 which	 all	 mcT2	 configurations	 participate	 in	 the	 fit-
ting	process,	the	proposed	strategy	focuses	the	optimizer	
to	identify	the	subset	of	mcT2	motifs	that	have	the	high-
est	 compatibility	 with	 the	 measured	 data.	 This	 reduces	
the	 chance	 of	 converging	 to	 unrealistic	 solutions,	 even	
if	 they	 present	 higher	 fitting	 accuracy	 at	 the	 pixel	 level.	
Third,	the	method	is	modular	in	a	sense	that	it	could	eas-
ily	 be	 expanded	 to	 higher	 number	 of	 subvoxel	 compart-
ments	or	focused	at	specific	T2	ranges,	thereby	making	it	
applicable	to	other	tissues	and	pathologies.	For	example,	
modeling	 the	cerebral	spinal	 fluid	compartment	by	add-
ing	a	 fourth,	 long	T2	compartment	or	using	a	dictionary	
focused	 on	 higher	 T2	 values	 to	 probe	 the	 gray	 matter	
compartmentation.

5.2	 |	 Findings of the current study

The	numerical	simulations	point	out	2	major	strengths	of	
the	suggested	method.	First,	the	successful	reconstruction	
of	spectra	with	1,	2,	and	3	T2	compartments	indicates	that	
this	 data-	driven	 approach	 can	 identify	 the	 correct	 num-
ber	of	T2	components	without	prior	assumptions.	This	is	
particularly	notable	when	analyzing	voxels	with	only	1	T2	
component.	In	these	voxels,	the	method	did	not	fall	short	
like	 classical	 fitting	 algorithms,	 which	 tend	 to	 improve	
accuracy	 by	 overfitting	 the	 signal	 to	 a	 larger	 number	 of	
components.	 Instead,	 it	 correctly	 identified	 the	 number	
of	 components	 and	 avoided	 the	 ambiguity	 in	 the	 signal	
space.	Secondly,	 the	perfect	reconstruction	at	SNR	of	60	
and	above	demonstrates	its	robustness	to	noise.	Such	level	
of	robustness	was	superior	to	the	implemented	voxel-	wise	
NNLS	fitting	algorithm	and	comparable	with	the	reported	
state-	of-	the-	art	mcT2	analysis	methods.12,20,39-	41	More	im-
portantly,	it	implies	the	clinical	potential	of	the	suggested	
method.

In	 vivo	 validation	 of	 mcT2	 fitting	 is	 challenging	 due	
to	 lack	 of	 ground	 truth.	 Correlations	 to	 histology	 were	
shown	 to	 provide	 some	 insight	 into	 microstructural	 fea-
tures	but	are	limited.4	To	generate	ground	truth	data,	we	
designed	a	unique	multi-	T2	phantom	with	2	distinct	length	
scales	and	having	both	subvoxel	morphology	and	internal	
modularity.	Its	dimensions	were	carefully	selected	to	en-
able	a	low-	resolution	scan	for	which	the	entire	phantom	
is	 captured	 in	 a	 single	 voxel	 (voxel	 size	 of	 5	 mm2),	 and	
a	 high-	resolution	 scan	 that	 reflects	 its	 internal	 structure	
(voxel	 size	 of	 0.15	 mm2)	 and	 provides	 ground	 truth	 for	
the	T2	values	and	relative	fraction	of	each	compartment.	
The	global-	to-	local	analysis	requires	a	minimal	number	of	
voxels	within	the	analyzed	tissue	segment	to	identify	the	
global	mcT2	motifs.	We	found	this	number	to	be	around	
100	voxels	to	achieve	reliable	profiling	of	the	anatomy.

The	modularity	of	the	phantom	design	could	be	bene-
ficial	for	modeling	biological	processes	occurring	at	sub-
voxel	 levels.	 In	 this	 study,	 we	 used	 this	 ability	 to	 model	
myelination	 levels	 in	 the	WM	 based	 on	 two-		 and	 three-	
compartment	tissue	model,	showing	high	correlation	be-
tween	estimated	and	actual	short-	T2	fractions.	Moreover,	
the	 method	 was	 able	 to	 select	 the	 true	 number	 of	 com-
partments	 in	1,	2,	or	3	compartments	voxels	without	as-
suming	a	prior	tissue	compartmentation.	This	was	seen	in	
both	phantom	designs,	implying	the	methods’	reliability,	
particularly	in	the	three-	compartment	phantom	where	7	
different	levels	of	short	T2	fractions	were	successfully	re-
covered.	Despite	the	accurate	MWF	estimation,	we	should	
remember	that	our	phantom	design	does	not	consider	in-
tercompartmental	water	exchange	that	may	impact	MWF	
quantification.3	Hence,	future	work	needs	to	incorporate	
inter-	compartmental	 exchange	 into	 the	 mcT2	 dictionary	
simulations.	The	repeatability	of	the	suggested	approach	
was	 tested	 on	 3	 consecutive	 brain	 scans	 performed	 on	
the	same	subject	in	1	session,	producing	consistent	MWF	
values	 for	 each	 WM	 segment	 that	 coincide	 with	 values	

F I G U R E  8  Comparison	of	whole-	
white	matter	MWF	maps	generated	
using	the	proposed	data-	driven	(left)	and	
standard	voxel-	wise	non-	negative	least	
squares	fitting	algorithm24,36	(right).	The	
data-	driven	preprocessing	step	affords	
improved	stability	and	significantly	fewer	
fitting	errors
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reported	in	the	literature.41	Lastly,	a	proof-	of-	concept	my-
elin	mapping	of	 the	entire	WM	showed	 improved	MWF	
quantification	compared	to	standard	voxel-	wise	NNLS	fit-
ting	algorithm.36

5.3	 |	 Clinical applicability

The	subvoxel	imaging	ability	of	the	suggested	data-	driven	
technique	may	serve	as	basis	for	several	clinical	applica-
tions,	 mainly	 for	 myelodegenerative	 diseases	 like	 multi-
ple	sclerosis,	Alzheimer	disease,	and	neuromyelitis,41	for	
which	a	subvoxel	 information	could	improve	the	assess-
ment	of	disease	state	compared	to	conventional	contrast-	
weighted	 images.	 Another	 clinical	 use	 is	 for	 tracking	
changes	 in	 brain	 lipids	 content	 in	 aging-	related	 condi-
tions,42	early	detection	of	fat	infiltration	in	muscle	dystro-
phies,43,44	accumulation	of	fat	in	the	liver,45	fat	necrosis	in	
breast	tissue,46	or	characterization	of	the	internal	compo-
sition	of	cancerous	tumors	as	shown	in	Ref.47.	The	ability	
to	visualize	these	changes	could	potentially	uncover	sub-
tle	microstructural	changes	that	are	currently	detectable	
only	postmortem.

5.4	 |	 Study limitations

Water	 exchange	 between	 microenvironments,	 such	 as	
the	 intra-	/extracellular	 spaces,	 exists	 and	 may	 impact	
MWF	 quantification.3	 The	 suggested	 method,	 however,	
as	 well	 as	 similar	 NNLS-	based	 methods,	 assume	 a	 slow	
exchange	regime	in	which	intercompartmental	exchange	
occurs	at	slower	time	scales	than	the	T2	relaxation	time.15	
According	to	current	reports,	 this	assumption	is	valid	in	
the	WM,	where	the	intraaxonal	mean	residence	time	are	
in	the	order	of	100 s	of	ms48	Because	this	assumption	is	not	
generally	sustained,	exchange	might	bias	subvoxel	analy-
sis,	 requiring	 to	 expand	 our	 tissue	 model	 to	 incorporate	
exchange,	for	example,	using	Bloch-	Torrey	equations	for	
2	multi-	compartment	relaxation	dynamics.49

For	 a	 successful	 reconstruction,	 the	 presented	 method	
needs	to	be	applied	on	a	single	WM	segment	consisting	of	
voxels	 with	 similar	 compartmentation.	 For	 this	 reason,	 in	
vivo	MWF	maps	(e.g.,	in	Figure 7)	are	shown	for	specific	WM	
segments.	To	map	the	entire	WM,	the	method	should	be	ap-
plied	consecutively,	each	time	on	data	from	a	different	WM	
segment,	and	only	then	combined	to	cover	the	entire	WM.	
This	limitation	could	be	circumvented	by	analyzing	multiple	
WM	segments	at	the	same	time	using	parallel	computing.

Modeling	 the	 internal	 structure	 of	 biological	 tissues	
is	 complex	and	may	 require	more	 than	3	 subvoxel	 com-
partments.	Expansion	of	the	suggested	model	to	4	or	more	
compartments	 is	 possible	 but	 will	 dramatically	 increase	

the	 size	of	 the	mcT2	dictionary,	 requiring	 stronger	com-
putation	 power	 than	 available	 on	 a	 standard	 personal	
computer.	 Another	 enhancement	 could	 be	 to	 expand	
the	 dynamic	 range	 and	 resolution	 of	 the	T2	 space	 to	 in-
clude	 denser	 T2	 grids	 and	 improve	 the	 tissue	 modeling.	
Nevertheless,	 the	use	of	such	parsimonious	dictionaries,	
which	 are	 tailored	 to	 the	 tissue	 in	 question,	 is	 common	
and	has	shown	useful	for	mcT2	analysis.18

6 	 | 	 CONCLUSION

This	work	presents	a	new	data-	driven	approach	for	mcT2	
analysis.	The	approach	employs	global	statistical	correla-
tions	 to	 identify	 dominant	 mcT2	 motifs,	 which	 are	 then	
used	 to	 constrain	 local	 analysis	 at	 the	 voxel	 level,	 while	
laying	minimal	a	priori	assumptions	on	the	tissue	micro-
structure.	 T2	 relaxation	 curves	 were	 modeled	 using	 the	
EMC	 algorithm,	 ensuring	 stability	 across	 scanners	 and	
scan	settings.	This	choice	can	be	generalized	to	other	signal	
models	such	as	extended	phase	graph,39	multiexponential	
decay,	or	MR	fingerprinting.21	Our	findings	on	numerical	
and	 physical	 phantoms	 demonstrate	 the	 accuracy	 of	 the	
proposed	mcT2	analysis.	 In	vivo	results	demonstrate	 that	
MWF	maps	derived	using	this	approach	are	repeatable	and	
consistent	with	literature,	implying	its	potential	for	MWI.	
No	 less	 important,	 T2	 signals	 can	 be	 quantified	 within	 a	
clinical	 timescale,	 making	 the	 presented	 technique	 ap-
plicable	 for	clinical	applications.	Full	source	code	can	be	
downloaded	at	https://github.com/NBE-	LAB/MCT2.git.
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