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Background: Magnetic resonance imaging (MRI) diagnosis is usually performed by analyzing contrast-weighted images,
where pathology is detected once it reached a certain visual threshold. Computer-aided diagnosis (CAD) has been pro-
posed as a way for achieving higher sensitivity to early pathology.
Purpose: To compare conventional (i.e., visual) MRI assessment of artificially generated multiple sclerosis (MS) lesions in
the brain’s white matter to CAD based on a deep neural network.
Study Type: Prospective.
Population: A total of 25 neuroradiologists (15 males, age 39 � 9, 9 � 9.8 years of experience) independently assessed all
synthetic lesions.
Field Strength/Sequence: A 3.0 T, T2-weighted multi-echo spin-echo (MESE) sequence.
Assessment: MS lesions of varying severity levels were artificially generated in healthy volunteer MRI scans by manipulat-
ing T2 values. Radiologists and a neural network were tasked with detecting these lesions in a series of 48 MR images. Six-
teen images presented healthy anatomy and the rest contained a single lesion at eight increasing severity levels (6%, 9%,
12%, 15%, 18%, 21%, 25%, and 30% elevation in T2). True positive (TP) rates, false positive (FP) rates, and odds ratios
(ORs) were compared between radiological diagnosis and CAD across the range lesion severity levels.
Statistical Tests: Diagnostic performance of the two approaches was compared using z-tests on TP rates, FP rates, and
the logarithm of ORs across severity levels. A P-value <0.05 was considered statistically significant.
Results: ORs of identifying pathology were significantly higher for CAD vis-à-vis visual inspection for all lesions’ severity
levels. For a 6% change in T2 value (lowest severity), radiologists’ TP and FP rates were not significantly different
(P = 0.12), while the corresponding CAD results remained statistically significant.
Data Conclusion: CAD is capable of detecting the presence or absence of more subtle lesions with greater precision than
the representative group of 25 radiologists chosen in this study.
Level of Evidence: 1
Technical Efficacy: Stage 3
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Magnetic resonance imaging (MRI) is the often preferred
modality for noninvasive imaging of soft-tissue pathol-

ogies. Traditionally, MRI diagnosis is performed via visual
interpretation of contrast-weighted images with typical voxel
sizes in the range of �1–10 mm3.1 Most pathologies, how-
ever, emerge at the microscopic level and manifest radiologi-
cally only after reaching a certain level of severity, for
example, multiple sclerosis (MS),2 Parkinson’s disease3

Alzheimer’s disease,4 or liver metastases.5 MRI-based diagno-
sis is thus limited to abnormalities that spread over large
enough volumes and above certain levels of severity in order
to be visually perceptible. As a result, considerable effort has
been invested throughout the last few decades in developing
more sensitive tools for earlier detection of tissue abnormali-
ties and more precise assessment of treatment response.6

Typical MR images are weighted by one or several MR
properties of the tissue, for example, relaxation times,7 while
also being affected by external factors such as the receive or
transmit coils sensitivity profiles, and inhomogeneity of the
main magnetic field.8 In the last decade, quantitative MRI
(qMRI) techniques have been developed, in which physical
parameters responsible for image contrast are determined on a
pixel-by-pixel basis to produce parametric maps.9 These maps
provide information pertaining to the tissue’s microstructural
architecture and chemical or biological composition, which,
in turn, correspond to pathological processes.10 An advantage
of qMRI is its improved sensitivity to tissue changes as exem-
plified by its ability to detect subtle pathology in tissues that
look normal under visual inspection.11 A second advantage of
qMRI is its potential to produce values that are invariant
across scanners and scan setting, thereby facilitating longitudi-
nal studies and data sharing between medical centers.11,12

These advantages of qMRI have been demonstrated in

various clinical applications, including cardiac, neurologic,
and musculoskeletal applications.11,13,14 Recently, several ini-
tiatives have been established, aiming to facilitate and advance
the use of qMRI in the clinic (eg, by the Radiological Society
of North America, and by the European Society of Radiol-
ogy15,16). Some of these include the use of computer-aided
diagnosis (CAD) of parametric qMRI maps as a supplemen-
tary approach for visual interpretation of MR images. These
include machine learning tools,17 voxel-based analysis,18

region-of-interest analysis,11 and medical decision support
systems.19 CAD is also applied to contrast-weighted image
data, albeit with lower robustness to data normalization, scal-
ing, type of scanner, and scan parameters.20

One of the key elements for assessing the utility of
CAD tools is to test whether they can improve the sensitivity
of radiologic readings. This sensitivity can be tested with
respect to various features of the tissue pathology such as size,
location, or severity of lesion. Several studies exist for evaluat-
ing the sensitivity of radiologic reading,21,22 or comparing
human visual analysis vis-à-vis CAD algorithms where ground
truth is obtained using other methods (eg, retrospective diag-
nosis).17,23–25 One possible disease model for such compari-
son is MS, which is characterized by inflammatory and
demyelinating white matter (WM) lesions, manifesting as
hyperintensities on T2-weighted MR images (see Fig. 1).2

Diagnosis of MS is based on the McDonald criteria,
which, amongst other parameters, relies on visual estimation
of lesion load.26 Previous studies have shown that CAD based
on quantitative mapping of T2 relaxation times can provide
additional useful biomarkers for distinguishing MS patients
from healthy controls.11,18,27

The aim of this study was thus to compare conventional
(visual) MRI assessment of tissue pathology to CAD using a

Figure 1: Demyelination processes, their effect on the T2 relaxation time, and appearance in T2-weighted fluid attenuated inversion
recovery (FLAIR) images. (a) Inflammation leads to demyelination of axons. (b) Inflamed areas are characterized with elevated T2
values. (c) Regions of elevated T2 appear as hyperintensities in FLAIR images. Representative lesions are emphasized by white
bounding boxes.
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deep learning neural network, in the setting of MS diagnosis
using simulated T2-weighted images.

Materials and Methods
Data Collection
Twenty five neuroradiologists (15 males, 15 in training), 29 to
65 years old (mean 39 � 9), with 1–35 years of experience (mean
9 � 9.8) were recruited from two large hospitals to participate in the
experiment. The experiment was approved by the local institutional
review board (IRB no. 0002297-3). Informed consent was obtained
from all radiologists who participated in this study. All participants
had normal or corrected-to-normal vision.

MRI data from 44 healthy human volunteers was collected
after obtaining informed consent and under the approval of the local
institutional review board (IRB no. 0001368-1 and S15-00023).
One patient was excluded from the study due to a single enhancing
lesion found in their hemispheric WM. Scans were performed on
whole-body 3 T scanners (Prisma and Skyra, Siemens Healthineers,
Erlangen, Germany). Scans used magnetization prepared rapid gradi-
ent echo (MPRAGE; Fig. 2a), multi-echo spin-echo (MESE;
Fig. 2b) and fluid attenuated inversion recovery (FLAIR) sequences.
Scan parameters are given in Table S1 in the Supplemental Material.
FLAIR scans from an additional 30 MS patients were imported from
the Multiple Sclerosis dataset of the University Hospital of Ljubljana
(MSLUB) for pre-training the neural network used for CAD.28

Image Analysis
MESE data were used to generate quantitative T2 (qT2; Fig. 2d) and
proton density (PD; Fig. 2e) maps using the echo modulation curve
(EMC) algorithm.8 WM masks were automatically generated from
MPRAGE scans and registered to qT2 and PD maps using
Freesurfer software tools (surfer.nmr.mgh.harvard.edu)29,30 (Fig. 2c).

Synthetic lesions were embedded into qT2 maps of healthy
brains. Lesions’ location and shape were determined using classic
image processing tools. First, a focal point was randomly selected
within the WM mask. Voxels within a radius of 5 mm around the
focal point were then chosen randomly, and their convex hull deter-
mined the lesion’s area (Fig. 2f). Lesions’ with size smaller than
0.5 cm2 were dilated until their area exceeded 0.5 cm2, producing
lesions of relatively fixed size. MS pathology was simulated by elevat-
ing qT2 values within the lesion’s area to one of eight predetermined
severity levels: 6%, 9%, 12%, 15%, 18%, 21%, 25%, and 30%.
Elevation of values was applied in a spatially centric manner where
the increase was maximal at the lesion center, and zero at the edges.
Examples of simulated lesions are shown in Fig. 3.

Modified qT2 maps (Fig. 2g) were used to generate synthetic
FLAIR images used in the psychophysical experiment (Fig. 2h).
Conversion was performed using an analytic model for the acqui-
sition of FLAIR signal on an MRI scanner (see Eq. S1, Fig. S1 in
the Supplemental Material). Model parameters were optimized
to visually resemble corresponding acquired FLAIR scans. The
synthetic FLAIR images were examined by a neuroradiologist

Figure 2: Synthetic magnetic resonance imaging pipeline: (a) T1-weighted image from a healthy subject. (b) T2-weighted scans for
increasing TEs from a healthy subject. (c) White matter (WM) segmentation generated automatically using Freesurfer software. (d) T2
map generated using the echo modulation curve (EMC) algorithm.8 (e) Proton density (PD) map generated using the EMC algorithm.
(f) Randomization of a convex ROI in the WM, whose values dictate pathological T2 changes. (g) Lesioned T2 map is generated by
voxel-wise multiplication of the ROI and the T2 map. (h) T2-FLAIR image is synthesized using an analytical signal model.
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(S.S., with 10 years of experience), confirming the appearance of
the synthetic FLAIR contrast and the appearance of the simulated
MS lesions.

Psychophysical Experiment for Lesion Detection
A two alternative forced choice psychophysical experiment was
designed to prospectively assess the efficiency of conventional visual
detection of tissue pathology.31 Stimuli for the experiment consisted
of 48 two-dimensional synthetic FLAIR images, derived from scans
of three healthy volunteers (dataset 1, see Table S1 in the Supple-
mental Material), having a constant spatial resolution (256 � 256),
and taken from the supratentorial brain region. The image series
contained 32 images with a single, oval, hyperintense lesion of simi-
lar size, and 16 images that were unedited and lesion free.

A diagram of the psychophysical experiment protocol is illus-
trated in Fig. 4. Prior to the experiment participants were informed of
the relative number of lesioned images. The experiment began with a
practice phase consisting of nine images, out of which six were lesioned,
while feedback on the detection accuracy was provided for each image.

The nine practice scans were used exclusively for training and not for
assessment of performance. The actual psychophysical experiment was
performed after the practice phase: participants were shown the series of
48 synthetic FLAIR images and asked to point out lesions. Images were
present on the screen for 10 seconds each, while blank images were
shown for 400 msec between each FLAIR image to reduce afterimage
effect.32 The test phase was split into two parts, each containing
24 images, and separated by an elective break of 1–5 minutes. Partici-
pants were allowed to skip images (i.e., shorten the 10 seconds period),
and their selections and response time were recorded.

CAD System
To assess CAD-based detection of lesions, the same series of images
used for the psychophysical experiment were used as a test set for a
binary classification neural network. The network architecture was
inspired from Y-Net33 with an EfficientNet backbone.34 The net-
work included attention layers (Fig. S3). The attention weight mask
was regularized by an innovative scheme (Eq. S2). Pre training of
the network was done using MS patients’ FLAIR images from a

Figure 3: Synthetic lesion embedded on a two-dimensional FLAIR image. A lesion is synthesized by changing the underlying values
of the tissue’s T2 relaxation times. (a) Examples of synthetic lesion at three levels of severity, reflecting T2 changes of 30%, 18%, and
6%. (b) Synthetic lesion in a randomly chosen WM region highlighted in white overlay and a dashed yellow inset. (c) Zoomed view of
the lesion in (a) and (b) for nine severity levels, where 0% change indicates a healthy tissue.

Figure 4: Psychophysical trial scheme: (a) Training phase: nine pairs of images are presented. Two out of three images on the right
are lesioned, while the left-hand images show the same slice with no lesion. Lesions are highlighted when found, as shown. (b) Test
phase: one image is presented at each step. Two out of three images contained lesions at various severity levels. (c) Raw data
illustration in a confusion matrix. Correct classifications (TP—true positive/hit; TN—true negative/correct rejection) are highlighted in
green while wrong classifications (FP—false positive/false alarm; FN—false negative/miss) are highlighted in light red.
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published dataset.28 Training and validation were performed using
the synthetically generated FLAIR images (NTotal = 9600), con-
taining images of healthy anatomy (NHealthy = 3200) and of syn-
thetic lesions (NLesions = 6400). Training and validation images
were derived from scans of 41 healthy volunteers (datasets 2 and
3, see Table S1 in the Supplemental Material). Training and valida-
tion sets were separated (35 volunteers’ scans for training, six for val-
idation). The entirety of data used for training and validation was
not included in the psychophysical test. Code for training and evalu-
ating the model is available at https://github.com/OmerShmuelii/
models.

Statistical Analysis
SPSS version 24.0 (IBM) and MATLAB R2018a (MathWorks Inc.,
Natick, MA, USA) were used to evaluate the performance of CAD-
based detection versus conventional visual detection of brain lesions.
Logistic regression was used to determine the change in accuracy as
a function of radiologists’ years of experience and lesion severity (%
of change in T2 values), where diagnostic accuracy is defined as
100 � (TP + TN)/(TP + TN + FP + FN). Cohen’s kappa coeffi-
cient was used to evaluate the agreement between the two detection
methods (radiologists and CAD), where kappa values of 0–0.6 were
considered weak, 0.6–0.8 were considered moderate, and 0.8–1 were
considered as strong agreement.35 Cohen’s kappa scores were calcu-
lated for two classifications of the data: once using binary decision
(i.e., lesioned/unlesioned), and second using a four-category classifi-
cation (i.e., TP, FP, TN, FN). Each of these was calculated sepa-
rately for each severity level and also globally producing an overall
kappa score for all severity levels. Odds ratios (ORs) were calculated
for CAD and for radiologist detection and compared between the
two approaches using z-test for log(OR). A P-value <0.05 was con-
sidered statistically significant.

Results
True Positive and False Positive Rates
Participants took an average of 5.6 � 3.4 seconds to analyze
each image, while the overall duration of the psychophysical
experiment was 7:42 � 1:26 minutes. Fig. 5 presents the effi-
ciency of radiologic and of computer-aided detection of
lesions, including true positive (TP) and false positive
(FP) rates per severity level. Variability in subjective assess-
ments among different radiologists and for CAD are indicated
by the error bars. TP rates (solid lines) for both radiologists
and CAD increase with lesion severity. The TP rate for CAD
was significantly higher than that of radiologists at middle-
low severity levels of 9–15% elevation in T2, but not signifi-
cantly different at 6% and at levels of 18–30% (P = 0.07,
0.80, 0.40, 0.38, and 0.29 for T2 elevation of 6, 18, 21, 25,
and 30% respectively). The FP rate (dashed line) for CAD
was significantly lower than that of radiologists (35 of 400 vs.
93 of 400 respectively, i.e., 8.75% vs. 23.3%). At very low
severity level (6% elevation in T2), the radiologists TP rate
was not significantly different from their FP rates (P = 0.12),
indicating that lesions were identified at chance level.

Agreement Between Radiologists and CAD
Full list of Cohen’s kappa (κ) scores, along with detection
performance for radiologists and CAD, is shown in Tables S2
and S3 in the Supplemental Material. Kappa scores for agree-
ment between visual and computer-aided detection indicated
weak agreement between the two approaches across all lesion
severities. Specific kappa scores were calculated for several
classifications of the data: considering only positive / negative
binary decision produced a κ = 0.41; considering a binary
decision but separately for each severity level produced kappa
scores of κ < 0.48; considering a four-way diagnosis
(TP, TN, FP, FN) across all severity levels, resulted in a score
of κ = 0.52; and lastly, considering a four-way diagnosis but
separately for each severity level, produced κ < 0.55.

ORs Comparison Per Severity Level
Overall ORs for radiologists and for CAD were 11 (95% con-
fidence interval [CI]: 9.5–14) and 53 (95% CI: 42–66)
respectively. The CAD overall OR was significantly higher
than the radiologists’ OR. Figure 6 presents the OR values
for radiologists and for CAD across the lesions’ severity levels.
Variability in subjective assessments among different radiolo-
gists and for CAD is indicated by the confidence bars. Ana-
lyzing each severity level separately, ORs for CAD were
significantly higher than ORs for radiologists for all severity
levels (6%, 9%, 12%, 15%, 18%, 21%, 25%, and 30% ele-
vation in T2). Notably, the radiologists OR for the first sever-
ity level (6% elevation in T2) was not statistically significantly
higher than 1. This is consistent with the similarity between
the FP and TP rates for severity level of 6% (93 of 400 and
29 of 100 respectively, i.e., 23.3% FP and 29% TP; see
Fig. 5), indicating that this level of severity is below the

Figure 5: TP and FP rates for radiologic and CAD lesion
detection as a function of the lesion severity. TP rate for CAD
was significantly higher than that of radiologists at middle-low
severity levels of 9%–15% elevation in T2, and comparable at
higher and lower levels. FP rate (dashed line) for CAD is
significantly lower than that of radiologists.
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threshold of visual detection in the experimental settings of
this study.

Trends in Radiologists’ Accuracy Per Years of
Experience and Per Severity Level
Based on the regression model the radiologists’ error rate
decreased by 1.9% for each year of experience and decreased
by 2.5% per 1% elevation in T2. Both findings were statisti-
cally significant.

Discussion
This work compared the diagnostic performance of radiolo-
gists and of a neural-network-based CAD. To that end, a
diagnostic psychophysical test was designed for radiologists,
and later given as input to the CAD tool. Results showed that
the selected CAD tool outperformed radiologists at low lesion
severity levels, while providing comparable diagnostic capabil-
ity at high severity levels. This suggests that CAD has the
potential to serve as a guide to radiologic analysis, particularly
for early diagnosis of subtle tissue abnormalities.

The psychophysical experiment performed in this study
was designed to match clinical settings as closely as possible.
This included simulating realistic lesions on standard FLAIR
MRI images and authenticating their morphology and loca-
tion through visual inspection by a neuroradiologist with
10 years of experience. The experimental procedure was also
adjusted to maximize similarities with clinical routine, while
maintaining a relatively simple binary detection task stating
either the existence or the lack of a lesion in each image. An
important difference between this work and past studies

where radiologists were presented with detection tasks,21 is
that in the previous studies, radiologists rated lesions on a cer-
tainty scale, rather than providing a binary decision. The cur-
rent study did not take such an approach to prevent
complications when comparing radiologic diagnosis and
CAD. Derivation of certainty levels which are consistent for
both radiologists and deep neural networks (DNNs) is possi-
ble but requires different experimental design and is thus left
for future studies.

The pathologies used as stimuli for the psychophysical
experiment consisted of simulated lesions, allowing precise
regulation of their location, size, and severity (see the Image
Analysis section of the Materials and Methods). The benefit
of using synthetic data when training DNNs to detect real
MS lesions in MR images, was investigated by Shmueli
et al,36 showing an improvement from 87.5% to 91.2% in a
network’s accuracy when employing this type of data aug-
mentation. Simulated pathologies in this study were gener-
ated at subtle severity levels of 6%–30% elevation in T2.
This choice of severity levels was based on results from a pre-
vious study,11 in which WM lesions that were obvious to
neuroradiologists on T2-weighted images manifested much
higher elevation of ≥35% change in T2 values compared to
homologues regions in healthy controls.

In this study, logistic regression and kappa score calcula-
tions served as sanity tests for the psychophysical experiment.
Kappa scores suggested that the errors made by the radiolo-
gists and by the DNN were largely independent from one
another and resulted from detection mismatches and not
from internal bias of the data—particularly at low severity
levels that correspond to early pathology. Trends from the
logistic regression analysis were as expected, indicating that
more severe lesions were easier to detect, and that more expe-
rienced radiologists performed more accurate diagnosis.

OR analysis resulted with expected trends, where ORs
for both CAD and radiologists were monotonic functions of
the lesion severity, except for a single CAD OR value at
severity level of 18%, which we consider an outlier of the
experiment. The lack of significant difference between TP
and FP rates for radiologists at the lowest severity levels
implies that the average evaluator has similar probability of
classifying the image as lesioned or unlesioned, regardless of
the underlying ground truth. This indicates that at the lowest
severity level, radiologic diagnosis was done at a chance level.
Furthermore, the analysis indicated that the CAD-based
approach outperformed conventional radiologic detection
across all severity levels in terms of OR, and at middle-low
severity levels (9%–15% elevation in T2) in terms of TP
rates. This suggests that automation of detection tasks may
enable more precise and early diagnosis. Alternatively, CAD
may be used as a decision-support or triaging systems as was
suggested in recent reports.19,37 Although CAD is unlikely to
outperform radiologists on every case, it is more scalable than

Figure 6: Odds ratios (ORs) for radiologists and computer-aided
diagnosis (CAD) as a function of the lesion severity. Error bars
indicate 95% confidence intervals (CIs). ORs for both techniques
increase with lesion severity. ORs for CAD are significantly
higher than ORs for radiologists in the four lowest severity levels
(≤15% elevation in T2 relaxation times) and are comparable for
higher lesion severity. *Statistically significant difference:
P < 0.05 with z-test for log(OR).
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visual analysis when facing large amounts of data.38 This
implies that experts’ time can be saved by embedding new,
automated, tools for detecting abnormalities in medical
images. Furthermore, CAD has potential to improve the
availability of healthcare in specialty fields and in countries
with limited number of expert physicians.37

The psychophysical experiment used in this study
employed a software package implemented in-house, that
automatically generated and embedded synthetic lesions in
MR images. This platform could be further utilized in several
other applications including evaluation of experts from differ-
ent backgrounds, and deployment as part of radiologists’
training programs. Another promising application is to har-
ness this platform to augment data when training machine-
and deep-learning based CAD tools.39 A provisional patent
application was filed for this technology in the United States
in July 2021 (application number 63/218,414).

Study Limitations
The stimuli used in the experiment had two degrees of free-
dom: location and severity, while lesion size remained rela-
tively constant. Data analysis, however, was based on a binary
decision stating either the existence or the lack of a lesion in
each image. This means that an image could have been
potentially tagged as having a lesion, yet, in the wrong loca-
tion. Lesions’ location is also relevant when analyzing a binary
decision, as it can influence detectability. Incorporating
lesions’ location or severity in the psychophysical experiment,
however, would require a considerably larger number of trials,
and more extensive use of experts’ time. Moreover, radiologic
diagnosis, and particularly differential diagnosis, is more com-
plex than a simple binary detection of a single lesion in a
two-dimensional image, as it typically requires addressing the
existence of several lesions, in multiple slices and contrasts,
while also incorporating the patient’s medical history.26

Another limitation lies in the use of synthetic MS lesions as a
model. While this allowed rigorous and accurate investigation
of the level of detectability in isolation of other cofactors, it
was at the cost of a simplified disease model. Improvements
to this model may be achieved by generalizing the pathologi-
cal tissue changes, for example, by employing multiple
lesions, multi-component T2 distributions,40 changes in T1

values,18 nonconvex morphologies, or completely different
pathologies like hepatic lesions, spinal cord injuries, or occult
pathology in normal appearing tissues.11 We thus limit the
interpretation of our results for synthetic MS lesions. Further
validation should be done on actual lesions and other general
pathologies.

Conclusion
This study of simulated MS lesions demonstrated that CAD
outperformed radiologists at low-severity lesions and achieved
similar performance for moderate to high severities.
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