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Abstract

MRI's T2 relaxation time is a valuable biomarker for neuromuscular disorders and

muscle dystrophies. One of the hallmarks of these pathologies is the infiltration of

adipose tissue and a loss of muscle volume. This leads to a mixture of two signal com-

ponents, from fat and from water, to appear in each imaged voxel, each having a spe-

cific T2 relaxation time. In this proof-of-concept work, we present a technique that

can separate the signals from water and from fat within each voxel, measure their

separate T2 values, and calculate their relative fractions. The echo modulation curve

(EMC) algorithm is a dictionary-based technique that offers accurate and reproduc-

ible mapping of T2 relaxation times. We present an extension of the EMC algorithm

for estimating subvoxel fat and water fractions, alongside the T2 and proton-density

values of each component. To facilitate data processing, calf and thigh anatomy were

automatically segmented using a fully convolutional neural network and FSLeyes

software. The preprocessing included creating two signal dictionaries, for water and

for fat, using Bloch simulations of the prospective protocol. Postprocessing included

voxelwise fitting for two components, by matching the experimental decay curve to

a linear combination of the two simulated dictionaries. Subvoxel fat and water frac-

tions and relaxation times were generated and used to calculate a new quantitative

biomarker, termed viable muscle index, and reflecting disease severity. This bio-

marker indicates the fraction of remaining muscle out of the entire muscle region.

The results were compared with those using the conventional Dixon technique,

showing high agreement (R = 0.98, p < 0.001). It was concluded that the new exten-

sion of the EMC algorithm can be used to quantify abnormal fat infiltration as well as

identify early inflammatory processes corresponding to elevation in the T2 value of

the water (muscle) component. This new ability may improve the diagnostic accuracy

of neuromuscular diseases, help stratification of patients according to disease sever-

ity, and offer an efficient tool for tracking disease progression.

Abbreviations: EMC, echo modulation curve; EPG, extended phase graph; ETL, echo train length; FCNN, fully convolutional neural network; MESE, multi-echo spin-echo; qT2, quantitative T2;

ROI, region of interest; SC, subcutaneous; SE, spin-echo; VMI, viable muscle index.
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1 | INTRODUCTION

MRI's transverse relaxation time (T2) has been proposed as a biomarker of neuromuscular disorders, and as an indicator of treatment response.1,2

This relaxation time manifests both macrostructural (voxel level) and microstructural (subvoxel) tissue changes, making it a proxy for peripheral

muscle dystrophies, inflammatory processes, or neuromuscular disorders. One of the hallmarks of these disorders is the substitution of muscular

tissue by fat and connective tissue, and a subsequent loss of muscle volume. The MRI signal from such a mixture of muscle and fat will therefore

reflect a superposition of two components within each imaged voxel: the first originating from intrafilamentary water molecules in muscle, and

the second associated with protons in the methylene group in fat molecules.3 Quantification of these fat and muscle components thus holds great

diagnostic and prognostic value by enabling accurate assessment of muscle state and staging of disease progression.4,5

One of the early techniques for estimating fat and muscle-water fractions ffatð and fwaterÞ was developed by Dixon et al.6,7 This approach

relies on collecting two separate spin-echo (SE) images, one where the signals from water and from fat protons are in phase, and a second image

with them 180� out-of-phase (termed the two-point Dixon technique). The relative fractions of water and fat can then be determined by adding

and subtracting the two images, yielding water and fat fraction (FF) maps. An extension of this technique to accommodate three echo times is also

available (i.e., the three-point Dixon technique), allowing to overcome potential fat/water swap errors in voxels with a high fat infiltration level,

and in order to correct for phase errors caused by inhomogeneities of the main magnetic field B0.
8

Another approach for estimating fat and water fractions employs multiecho spin-echo (MESE) protocols, which allows to separate the fat and

muscle-water components based on differences in their T2 relaxation times.9–12 A natural and important prerequisite of probing two T2

components is to be able to achieve reliable quantification of single T2 values. This task, however, is by itself challenging in clinical settings

because of the bias of MESE protocols by stimulated and indirect echoes.13 These cause MESE signals to deviate from the theoretical

exponential T2 decay pattern, and instead follow a more generalized echo modulation curve (EMC).14,15 This deviation is moreover not constant

across different T2 values, protocol implementations, and scan parameters, causing T2 values for a given subject to vary between scanners and

scan settings.16 Single- or multi-exponential fitting models of MESE data may thus produce unreliable values as they do not account for stimulated

echoes.12

Two simple approaches to alleviate some of the signal bias caused by stimulated and indirect echoes are to remove the first echo or to use

only the even numbered echoes. Apart from omitting high signal-to-noise ratio (SNR) datapoints, both of these solutions still do not provide an

accurate measure of T2 for two reasons: (1) the indirect echoes affect the entire T2 decay curve, and (2) the T2 decay curve still depends on the

scan parameters and will change, for example, when changing the slice thickness, acquisition bandwidth, excitation/refocusing RF pulse shapes,

and flip angles, etc.

Another possible approach for overcoming this bias is provided by the extended phase graph (EPG) formalism,17 which tracks all the coher-

ence pathways in the MESE echo train to calculate a more realistic experimental decay curve. An extension of the EPG method for a two-

component signal model has been reported recently to estimate the muscle transverse relaxation time and FF in thigh muscle of patients with var-

ious neuromuscular diseases.18,19 Another recent approach is magnetic resonance fingerprinting (MRF). This multiparametric mapping technique

uses a pseudo-randomized acquisition scheme to generate a signal fingerprint, which is then fitted to a precalculated dictionary of simulated signal

curves in order to extract the parameters encoded during the experiment.20,21 An extension of the MRF framework for two components has been

developed recently,22 demonstrating its ability to generate FF maps alongside other tissue properties such as T1 and T2 relaxation times.22 The

main limitation of MRF-based separation of fat and water is the error in FF in the presence of main field (B0) inhomogeneities.

The EMC algorithm has been proposed for accurate and stable mapping of T2 relaxation times.15,16 This algorithm uses Bloch simulations to

model the magnetization evolution during multiecho acquisitions, followed by a dictionary-matching fitting process. The EMC technique has been

shown to correctly model MESE signals and deliver accurate and reliable maps of the tissues' T2 values. Notably, the fitted values are reproducible

and, most importantly, independent of the sca'ner, scan settings, and protocol implementation.23

The EPG'and EMC algorithms are based on SE protocols and are thus immune to B0 inhomogeneities. MRF on the other hand is based on fast

gradient-echo acquisitions so as to accelerate data acquisition, yet at a cost of lower T2 encoding quality and sensitivity to B0 inhomogeneities

vis-à-vis SE-based acquisitions.

In this current proof-of-concept study, we report an extension of the EMC algorithm for two-component fitting focusing on subvoxel estima-

tion of fat and water fractions, alongside their T2 relaxation times. The advantage of using the extended EMC framework is its ability to quantify

the amount of infiltrated fat in a muscle tissue, while at the same time probing changes in muscle T2 values that are indicative of underlying

inflammatory or fibrotic processes.1,2 Examples of the extended EMC algorithm are shown for healthy subjects, patients suffering from muscular
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dysferlinopathy, and patients with Charcot–Marie-Tooth (CMT) disease. The results are validated against Dixon-based estimations of water and

fat fractions.

2 | METHODS

2.1 | Study population

Five healthy volunteers (age 35 ± 8 years) were scanned at the MRI facility at Tel Aviv University. An informed consent form was signed by all vol-

unteers and the study was approved by the local ethics committee. Two patients (age 38.5 ± 0.5 years) with a genetically confirmed

dysferlinopathy, and 11 patients (age 57 ± 15 years) with genetically confirmed CMT disease, were recruited and scanned at the Centre de

Résonance Magnétique Biologique et Médicale in Marseille, France. All patients' scans were approved by the local ethics committee (Comité de

Protection des Personnes Sud Méditerranée I).

2.2 | MRI scans

Volunteer scans of the calf muscle were carried out on a whole-body 3-T scanner (Prisma, Siemens Healthineers). Dysferlinopathy and CMT

patients were scanned on a whole-body 1.5-T scanner (Avanto, Siemens Healthineers). All subjects were scanned in supine position (feet first)

using an eight-channel flexible matrix coil. Scans included a single-voxel spectroscopy (SVS), a two- and three-point Dixon, and a MESE protocol.

SVS scans used the STRESS protocol24 (see the supporting information, Section S5). The STRESS scan parameters were Tacq = 1 h 3 min; voxel

size = 20 x 20 x 15 mm3; TR = 1500 ms; TE = 15 ms; and NAverages = 32. The three-dimensional two-point Dixon scan parameters were

TR = 30 ms; TE1/TE2 = 2.46/3.69 ms; flip angle = 15�; Nslabs = 1 covering the central part of the calf anatomy (one readout dimension and two

phase-encoded dimensions); slices per slab = 16; voxel size = 1.1 x 1.1 x 4.0 mm3 (slice thickness = 4 mm); coverage = 64 mm; NAverages = 3;

Tacq = 1 h 10 min; and acceleration = 2 x CAIPIRINHA. The three-dimensional three-point Dixon scan parameters were TR = 22 ms; TE1/TE2/

TE3 = 2.38/4.76/7.16 ms; flip angle = 5�; NSlabs = 1 covering the central part of the calf/thigh anatomies; slices per slab = 36; voxel size = 1.72

x 1.72 x 5.0 mm3 (slice thickness = 5 mm); coverage = 180 mm; NAverages = 2; Tacq = 3 h 23 min; and acceleration = 2 x CAIPIRINHA. The MESE

scan used a 2D multislice acquisition while the FOVs were positioned so as to cover the entire calf/thigh muscle regions. The MESE protocol

parameters for volunteers, dysferlinopathy, and CMT patients, respectively, were TR/TE = 3000/10, 2500/8.7, and 2500/8.7 ms; NEchoes = 25,

17, and 16; voxel size = 1.1 x 1.1, 1.5 x 1.5, and 1.7 x 1.7 mm2; slice thickness = 4, 10, and 10 mm; Nslices = 5, 5, and 10; slice gap = 6, 30, and

20 mm; coverage = 28, 130, and 190 mm; Tacq = 3 h 18 min, 2 h 28 min, and 3 h 8 min; and acceleration = x2 GRAPPA. Fully convolutional neu-

ral network (FCNN) training used MESE data from the thighs and calves of 14 dysferlinopathy patients (age 36 ± 4 years). The scan parameters

were TR/TE = 1479/8.7 ms; NEchoes = 17; in-plane resolution = 1.5 � 1.5 mm2; matrix size of 128 � 128; Nslices = 5; slice thickness = 10 mm;

and Tacq = 5 h 7 min.

2.3 | Data postprocessing

Spectroscopic quantification of water and fat content was carried out by calculating the area under each peak in the SVS spectra as a percentage

of the total area under all peaks. Peaks were identified with a constraint of a 0.2 ppm minimal distance between the water and fat peak in the

spectrum (as the water found at 4.7 ppm is at least 3.5 ppm apart from the methylene fat peak found at �1.2 ppm). A threshold was applied to

exclude peaks that were less than 6% from the spectra's maximum value. The ground truth reference T2 values were calculated from the series of

SVS scans performed at increasing TEs. The water fraction was quantified from the SVS spectrum by taking the integral under the water peak at

4.7 ppm. Peak areas were then plotted against their corresponding TEs, producing an exponential decay curve, and the ground truth muscle/water

T2 value was calculated from that exponential curve. Dixon water and fat fractions were determined using the two-point Dixon technique for vol-

unteers7 and using the three-point Dixon technique for patients.8

2.4 | Segmentation of images using a FCNN

Prior to applying the extended EMC algorithm, the anatomical MR images of the calf were segmented to identify the clinically relevant region of

interest (ROI) for muscle dystrophies. This covered the healthy and diseased muscle regions, and excluded the subcutaneous (SC) fat, the inter-

muscular fascia, and the bones. The first stage of segmentation consisted of delineating the muscle's outer boundary on the raw (T2-weighted)
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MESE images using a Canny edge detector. The images were then normalized to zero mean and unit variance. The resulting mask was then used

as an input to a fully convoluted deep learning neural network. Network training data consisted of calf and thigh muscle scans from 14 patients,

manually segmented by an expert with more than 10 years of experience. These were concatenated and fed to the network's input via 17 chan-

nels corresponding to the number of timepoints in the MESE protocol echo train. The model was trained using the Adam optimizer, with the

default settings for the tested machine learning problem as follows: α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10�8:25 The optimized loss function

was the Dice coefficient loss. The batch size was set to 8 and the model was trained for 100 epochs. To improve the model's robustness in the

presence of data variance, augmentation was performed on the original training images, increasing their number by a factor of 10. This summed

up to a total of 14 (patients) x 5 (slices per patient) x 17 (echoes) x 10 (augmentations)=11,900 slices used for the training process. The augmen-

tation included shifting the training images (0.2 of image height and width), zooming (from 0.9 to 1.3 of image size), rotating (0��30�), and flipping

(vertical\horizontal). The network implementation was written in Python and used the Keras libraries. The training process of the neural network

was performed on a standard PC with an NVIDIA GeForce GTX 1080 Ti GPU.26

The network used is a convolutional network for medical image segmentation, otherwise known as a U-Net. The network output consisted of

a muscle mask (including any infiltrated fat) and a second mask containing the SC fat and the bones. Testing of the FCNN was performed on a

dataset consisting of three patients with different disease severities. The evaluation metrics used to assess the performance of the network were

the Dice similarity coefficient (DSC) = (2 x TP)/(2 x TP + FP + FN), positive predictive value (PPV) = TP/(TP + FP), specificity = TN/(TN + FP),

and sensitivity = TP/(TP + FN), where TP = true positive, TN = true negative, FP = false positive, and FN = false negative. A summary of the

network architecture and performance is given in supporting information Sections S1 and S2.

The thigh muscles of the 11 CMT patients were segmented by our FCNN (to separate it from the SC fat) and was then delineated into 10 dif-

ferent muscle regions: vastus intermedius, vastus lateralis, vastus medialis, rectus femoris, adductor, semimembranous, semitendinous, biceps

femoris, sartorius, and gracilis muscles. This was done automatically using FSLeyes imaging software developed by the FMRIB Centre at the Uni-

versity of Oxford.27

2.5 | The extended EMC algorithm – generation of fat/water fraction maps

Programming of the extended EMC algorithm was done in-house using MATLAB (MathWorks Inc., Natick, MA, USA) and C++. Preprocessing

involved creating a dictionary of signal decay curves by repeating Bloch simulations of the prospective MESE protocol for T2 relaxation values in

the range 5–1000 ms (generic dictionary used for all organs), and transmit-field (Bþ
1 ) inhomogeneity levels of 70%–130% of nominal value. This

produced a dictionary (Water) of simulated EMCs, labeled EMCWater , each associated with a unique pair of [Bþ
1 , T

W
2 ] values, where TW

2 = T2 of

water component. A second dictionary was created for the fat component, that is, for the signal originating from protons in the CH2 (methylene)

groups, having the highest natural abundance in a fat molecule. This dictionary (Fat) was generated by repeating the above simulations, but at

3.5 ppm (447Hz) off-resonance. Each EMC in the Fat, labeled EMCFat , was similarly associated with a unique pair of [Bþ
1 , T

F
2], where TF

2 = T2 of

fat component (Figure S3).

Postprocessing was done on a voxel-by-voxel basis by matching the experimental EMC to a linear combination of the two simulated dictio-

naries. This was calculated as the weighted sum of two decay curves

EMCexperimental ¼ fW �EMCWater þ 1� fWð Þ�EMCFat, ð1Þ

where fW is the water fraction in the range 0%–100% with increments of 2%, resulting in three parametric maps, TW
2 , TF

2, and fW . Fitting of the sig-

nal in each voxel was done via L2-norm minimization of the difference between the experimental and the simulated EMCs, over the range of sim-

ulated [Bþ
1 , T

W
2 , TF

2, fW ] values, and choosing the dictionary entry that yields the minimum norm. Experimental signal timepoints with an intensity

below a 10% threshold were truncated to avoid bias due to Rician noise at the signal tail.28 The large difference between the short water T2 and

long fat T2 values caused the water component's signal to decay much more rapidly than the fat signal. As a result, the number of timepoints in

the L2-norm calculation needed to be adjusted to take only the number of meaningful points of each component and exclude noisy datapoints.

To that end, the experimental EMC was separated into two components by subtracting the simulated water signal from the experimental curve to

produce fat-only signal and subtracting the simulated fat signal to produce water-only signal. Two L2 norms were then calculated separately for

water and for fat signals and then summed according to each component's relative fraction to produce a final L2 norm value. A flowchart of the

extended EMC algorithm is illustrated in Figure 1. The ambiguity of this three-parameter fitting method was overcome in step (c) by fixating the

fat T2 value (allowing it a smaller range), which greatly improved the convergence of the fitting process.

The algorithm included four main steps. Step (a): automatic segmentation using an FCNN,29 producing a mask of the muscle region, including

any infiltrated fat (excluding the bones), and a second mask of the SC fat region. Step (b): a standard, single-T2 component EMC fitting of the mus-

cle region outputted from step (a). The resulting Bþ
1 map was then spatially extrapolated to yield a Bþ

1 map of the entire anatomy (i.e., all muscles

and SC fat). Step (c): a two-component fit was performed on the SC fat region only outputted from step (a). Fat fraction in this region was set to

4 of 14 NASSAR ET AL.
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90% (fW = 10%), based on a previous report by.12 The mean TF
2 of fat computed in this step was assumed to represent the baseline TF

2 in the

entire anatomy and was used as input to the next step. Step (d): a two-component fit was performed for the segmented muscle anatomy (muscle

+ infiltrated fat). The allowed range of fat T2 values was set to TF
2 of fat from step (c), ± 0.3 x standard deviation (SD) as a prior to the fitting pro-

cess. This 30% margin was chosen to allow for natural deviations in the local TF
2 values. The fitting process consisted, in this case, of a three-

parameter (TF
2, T

W
2 , fW ) fit of the experimental EMC to the combined fat-water dictionaries using an exhaustive search, that is, by sampling all pos-

sible combinations of TF
2, T

W
2 ,and fW . The closest simulated decay curve was then chosen according to two constraints. The first constraint was

finding the minimum L2 norm difference between experimental and simulated EMCs. The second was a “single-T2 validation constraint”, demand-

ing that the analytically constructed single-T2 value computed by combining the T2 values of the two components, as in Equation (2), falls within a

5% range of the empirical single-T2 computed in step (a):

T2,analytical ¼ fW x EMCW xe
�TE
Tw
2 þ 1� fWð Þ x EMCF x e

�TE
TF
2 : ð2Þ

This procedure was performed for each voxel in the image, yielding TW
2 , TF

2, and fW maps (Section S4). A new quantitative biomarker for mus-

cle health, termed the global viable muscle index (VMI), was then calculated to reflect a global measure of disease progression, by denoting the

fraction of remaining muscle out of the entire muscle region. This marker might be useful as it provides a complementary measure of muscle

volume.

3 | RESULTS

Application of the extended two-component EMC algorithm is illustrated in Figure 2, showing a water fraction map of a transverse slice of the calf

muscle of a patient with dysferlinopathy. Good agreement is seen between the experimental and simulated decay curves (black asterisk and solid

red line, respectively) for a representative voxel, marked with a red ROI. For reference, water-only and fat-only T2 decay curves are shown in

F IGURE 1 Flowchart of the extended EMC algorithm used for fat/water estimation. (A) The raw MESE data are initially inputted into a fully
convolutional neural network (FCNN) that segments the anatomy to muscle regions and subcutaneous (SC) fat, while excluding the bones and
bone marrow. (B) A simple single-T2 component fit is performed in the muscle region, producing a Bþ

1 map which is then extrapolated to cover the
entire anatomy. (C) A two-component fit is then performed within the subcutaneous fat region to calculate the T2 value of fat in the examined
anatomy. (d) TW

2 ,TF
2, and fW maps are calculated by performing a two-component fit of the segmented anatomy (muscle and infiltrated fat region),

yielding the clinical VMI biomarker. EMC, echo modulation curve; MESE, multiecho spin-echo; T2w, T2-weighted.

NASSAR ET AL. 5 of 14
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dotted blue and dashed black lines, respectively. The water fraction in this diseased muscle voxel was found to be fwater = 0.46, with the rest of

the voxel consisting of fat which replaced the muscle tissue.

Examples of the automatic segmentation stage are shown in supporting information, Section S2, Figure S2 for dysferlinopathy patients at

three levels of disease severity. Section S1 and Table S1 summarize the network performance based on DSC, PPV, sensitivity, and specificity. All

evaluation metrics produced highly positive values, reflecting the network's high performance. Results for mild, moderate, and severe disease

levels were, respectively, DSC: 0.964, 0.973, and 0.963; PPV: 0.943, 0.994, and 0.950; sensitivity: 0.987, 0.952, and 0.975; and specificity: 0.990,

0.999, and 0.993.

Fat/water quantification in an axial slice of one of the healthy volunteers is shown in Figure 3 using the extended EMC algorithm (3b), Dixon

(3c), and SVS (3d,e). An EMC-based water T2 map is presented in Figure 3F. The water fraction in the muscle region (blue ROI in Figure 3A) was

fwater = 97.5% ± 1.1%, 97.7% ± 10.0%, and 96.8% for the three techniques, respectively. We consider these values to be in good agreement con-

sidering the natural interscan variations and the different encoding protocols of each technique.

Figure 4 demonstrates the application of the extended EMC algorithm on a patient with mild dysferlinopathy. Panel (a) shows an anatomical

T2-weighted image (TE = 17.4 ms), marked with a muscle region, which was automatically segmented by the deep learning U-Net (dashed line).

F IGURE 2 Two-T2 component fit showing good agreement between experimental and simulated decay curves in a diseased muscle voxel
(marked by the red asterisk in an anatomical T2-weighted image in (A)) consisting of both water and fat molecules. (B) Water-only and fat-only T2
decay curves are shown as dotted blue and dashed black lines, reflecting fwater of 0.46.

6 of 14 NASSAR ET AL.
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Water fraction in a diseased muscle region (red square ROI) was fwater = 96.0% ± 8.1% and 94.0% ± 11.0%, calculated using the extended EMC

algorithm (4b) and the Dixon technique (4c), respectively. The ground truth reference T2 value was calculated from the SVS scans by fitting to an

exponentially decaying model (see the Methods section), yielding a T2 = 42.5 ms with R-square = 0.998 for the goodness of fit. An EMC-based

water T2 map is presented in Figure 4E, exhibiting a T2 value of 38.1 ± 6.4 ms in this diseased muscle ROI, in agreement with the corresponding

SVS value. The marked area reflects a typical dysferlinopathy pathology where fat has not yet replaced the muscle tissue, yet the T2 of the dis-

eased muscle was elevated based on the extended EMC algorithm.

Results for a patient with a moderate case of dysferlinopathy are shown in Figure 5. Water fraction maps calculated using the extended EMC

algorithm (5b) and the Dixon technique (5c) demonstrate the infiltration of fat into the diseased muscle region. Panel (d) shows an EMC-based

water T2 map. The mean water fraction for an ROI located within the tibialis anterior muscle region (red ROI) was fwater = 22.6% ± 11.5% and

21.8% ± 8.3% using the EMC algorithm and the Dixon technique, respectively, both reflecting clear muscle degeneration. The corresponding FF

maps are shown in Figure S6.

Mean FF for each muscle was calculated from the FF maps using both the extended EMC algorithm and the gold standard three-point Dixon

technique. The correlation between the FF values calculated with both methods is shown in Figure 6A, producing R2 = 0.98, indicating excellent

correlation (p < 0.001), fitting the linear relation y¼�0:061þ1:1x. A Bland–Altman plot comparing the FFs derived from both methods is shown

in Figure 6B. All values shown in Figures 6 and 7 are calculated from 2D data consisting of a series of transverse slices. The systemic mean bias

was 0.043 (solid black line) in FF value between the two methods. The red dashed lines correspond to the 95% confidence intervals, and all the

points fall within them, except for a few outliers.

The correlation between the muscle volume as calculated using both methods is shown in Figure 7A, producing a correlation of R2 = 0.98,

indicating excellent agreement (p < 0.001), fitting the linear relation y¼�460þ0:99x. A Bland–Altman plot comparing the muscle volume derived

from both methods is shown in Figure 7B. The mean bias in muscle volume measurement between the two assayed methods was 608mm3 (solid

black line), reflecting a very small relative difference. The red dashed lines correspond to the 95% confidence intervals, while most of the points

fell within them, except for a few outliers.

Table 1 presents the results for five healthy subjects and two dysferlinopathy patients at two disease severities. A similar analysis is presented

in Section S7, Table S2, for 11 CMT patients. The second column shows the mean T2 of the water component within the muscle region produced

by the extended EMC algorithm along the water/fat fractions. The mean T2 value of the muscle region for the patients falls within normal range

as the T2 of the diseased muscle ROI averages out when examining the entire muscle region. The VMI is delineated in the third and forth columns

representing the relative fraction of viable muscle calculated using the extended EMC algorithm and using the Dixon technique (two- and three-

F IGURE 3 Two-T2 component fit for an axial slice of a calf muscle from a healthy volunteer. FOVs for EMC and Dixon were positioned so as
to overlap and cover the central parts of the calf muscles. (A) Anatomical T2- weighted image. (B) fW map produced by the EMC algorithm
showing a mean value of fW ¼97:5%�1:1% in the muscle region (blue ROI) and a mean fW ¼7:0%�3:0% in the SC fat region (red ROI).
(C) Dixon-based fW map producing mean fW ¼97:7%�10:0% in the muscle region (blue ROI) and mean fW ¼10:8%�6:2% in the SC fat region
(red ROI). (D) Single voxel spectroscopy (SVS) of a fat voxel producing 94.9% fat and 5.1% water. (E) SVS of a muscle voxel producing 96.8%
water and 3.2% fat. (F) Quantitative map of the T2 relaxation time for the water component only. EMC, echo modulation curve; FOV, field of
view; ROI, region of interest; SC, subcutaneous.
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F IGURE 4 Two-T2 component fit for an axial slice of a calf muscle from the patient with a mild condition of dysferlinopathy. (A) Anatomical
T2- weighted image superimposed with a dashed yellow outline of the muscle mask segmented by the U-Net. (B) fwater map from the EMC
algorithm with a mean water fraction of fW ¼96:0%�8:1% in the muscle region (red ROI). (C) Dixon-based fwater map with mean fW ¼
94:0%�11:0% in the muscle region (red ROI). (D) Exponential decay curve exhibited by the water peak in the spectrums from SVS scans at
increasing TEs (diseased muscle region). Exponential fitting produced, in this case, a T2 value of 42.5ms. (E) EMC-based TW

2 map for the muscle
mask only, with a mean TW

2 ¼38:1�6:4 ms (red ROI). EMC, echo modulation curve; ROI, region of interest; SVS, single voxel spectroscopy.

F IGURE 5 Two-T2 component fit for an axial slice of a calf muscle from the patient with a moderate condition of dysferlinopathy.
(A) Anatomical T2-weighted image superimposed with a dashed yellow outline of the muscle mask, automatically segmented by the U-Net.
(B) EMC-based fwater map producing a mean water fraction of 22.6%±11.5% in the diseased muscle region (red ROI). (C) Dixon-based fW map
producing a mean water fraction of 21.8%±8.3% in the diseased muscle region (red ROI). (D) EMC-based water T2 map. EMC, echo modulation
curve; ROI, region of interest.
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point Dixon for the volunteers and patients, respectively). Both techniques yielded similar values for the VMI across the five volunteers and two

patients. While the patient with moderate dysferlinopathy exhibited a significant reduction in muscle region, this change was not observed in the

patient with mild dysferlinopathy. This suggests that although the disease has already set in, the muscle region for this patient has not yet suffered

significant tissue degeneration.

This indeed is one of the advantages of using the EMC technique: the measured T2 values indicate early pathology, even prior to abnormal

fat accumulation within the muscle region. The significant tissue degeneration occurs in many cases in a limited tissue region, exhibiting water

(muscle) T2 values that are above normal. Such local elevations, however, are masked when averaging across the entire muscle region as seen

from the values in Table 1. Therefore, early detection might, in future work, be based on identifying disease focal points.

Section S7 presents corresponding results for the 11 patients with CMT.

F IGURE 6 (A) Correlation graph of fat fraction (FF) values derived from the extended EMC algorithm and using the gold standard three-point
Dixon technique. The two techniques produce highly correlated values (R2 = 0.98, p < 0.001). (B) Bland–Altman plot of FF values derived from
the extended EMC algorithm and the gold standard three-point Dixon technique, showing high correlation between the two fitting techniques.
EMC, echo modulation curve.

F IGURE 7 (A) Correlation graph of muscle volume values derived from the extended EMC algorithm and using the gold standard three-point
Dixon technique. The two techniques produce highly correlated values (R2 = 0.98, p < 0.001). (B) Bland–Altman plot of muscle volume values
derived from the extended EMC algorithm and the gold standard three-point Dixon technique, showing high correlation between the two fitting
techniques. EMC, echo modulation curve.
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4 | DISCUSSION

Quantification of fat infiltration and its accumulation in diseased muscle regions has a high prognostic value, enabling to assess tissue status and

monitor the progression of muscle dystrophies and neuromuscular disorders.30 This, however, requires accurate identification and separation of

the fat and water components.

Several techniques exist for separating water and fat, with Dixon being considered the gold standard.7 Despite its widespread use, this tech-

nique has several limitations. First, the two-point Dixon technique does not account for inhomogeneities of the external main and transmit mag-

netic fields (B0 and Bþ
1 ). This is partially rectified by using the three-point Dixon technique, which accounts for B0 inhomogeneities by acquiring a

third image.8 The EMC algorithm does not suffer from B0 inhomogeneities as it is based on a SE protocol. It also eliminates B1
+ inhomogeneities

as their effect is modeled in the fitting process.14 Second, Dixon might misclassify water as fat, and vice versa, when their relative fractions are

close to 50%.31,32 This is because the water component decays very quickly relative to the fat, hence even for a relatively high fraction of the

water component, its signal intensity would be low and only make a small contribution to the overall acquired signal, leading to water-fat

misclassifications.

In this study we introduced an extension to the EMC T2-mapping algorithm,15,16,23 which allows to separate the water and fat components

within each imaged voxel based on their transverse relaxation time constants. The outputs are maps of water T2 values T
W
2 , and the relative frac-

tions of water and fat (fW , fF ). Further to that, the EMC technique employs a standard MESE protocol scheme, making it readily available on any

clinical or preclinical scanner. Another technique that is based on MESE protocols for mapping T2 is the slice-resolved extended phase graph (SR-

EPG) algorithm.33 These techniques provide different performances, and particularly with respect to the use of non-180� refocusing pulses. A rig-

orous comparison of Bloch simulations-based T2 mapping to EPG-based T2 mapping showed that the former is more robust to B1
+ inhomogenei-

ties (see McPhee and Wilman34). Another added value of the EMC approach is its use of the exact pulse-sequence timing diagram in the Bloch

simulations of the MESE signals, producing values that are more reproducible across different scanners and scan settings.23,35 A further compari-

son of EMC-based and EPG-based fat/water separation would be of interest, but is beyond the scope of the current study.

By using quantitative T2 mapping, one can obtain both global and quantitative assessment of the disease state. The globality arises by auto-

matically analyzing data from the entire calf and thigh muscles, and not just from representative ROIs. The quantitative values include the relaxa-

tion times of both the fat and muscle (i.e., water) components, their relative fractions, and a complementary clinical biomarker, the VMI,

representing the percentage of the remaining muscle tissue. This has the potential to enhance diagnosis accuracy, improve patient follow-up, and

reduce observer-dependent bias in decision-making processes.23,36 The extended EMC method shows promising results, yielding an average mus-

cle T2 of 29.3 ± 3.4 ms for all the healthy subjects, consistent with literature values, for example, Krššák et al., who reported T2 of 30 ms in the

muscle, and Gold et al., who reported T2 of 31.7 ± 1.9 ms.37,38 Analyzing patients' data, we saw that the VMI decreased with disease severity as

more fat replaces the diseased muscle tissue. Further, more rigorous validation is needed, comparing the VMI's values vis-à-vis radiologic grading

of the disease on large patient populations. Furthermore, the result shown for the dysferlinopathy patient in Figure 4, where the T2 of the muscle

increases prior to fat replacement, is consistent with previous reports where increased T2 was shown to be a sensitive biomarker for the level of

pathology caused, for example, by inflammation, edema, or necrosis of dystrophic cell lesions.11,39

The measurement of disease progression and therapeutic responses is most accurately done by taking a muscle biopsy and quantifying the

proteins responsible for the disease.40,41 The expression of dystrophin, the protein product of several muscular dystrophies, has been used as an

TABLE 1 Comparison of the VMI calculated using the extended EMC algorithm (third column) and using the Dixon technique (forth column)
for five healthy subjects (two-point Dixon) and two patients with dysferlinopathy (three-point Dixon). The VMI manifests the fraction of
remaining viable muscle out of the entire muscle region where pathology started developing, causing muscle tissue to be replaced by fat. The
extended EMC algorithm also yields the mean T2 within the viable muscle region (second column).

Extended EMC algorithm
Dixon*

Mean T2 (ms) VMI (%) VMI (%)

Healthy subject 1 31.9 ± 6.7 97.4 98.8

Healthy subject 2 29.1 ± 4.4 99.4 99.6

Healthy subject 3 33.6 ± 7.8 96.6 95.8

Healthy subject 4 25.8 ± 5.1 92.7 98.8

Healthy subject 5 26.2 ± 4.8 94.8 95.1

Mild patient 27.6 ± 4.7 96.8 100

Moderate patient 28.3 ± 9.4 77.7 81.5

Abbreviations: EMC, echo modulation curve; VMI, viable muscle index.

*Two-point Dixon for volunteers and three-point Dixon for patients.
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outcome measure in clinical trials.42 However, accurate quantification of dystrophin has been challenging and requires an invasive muscle

biopsy.43 Some pitfalls of performing a muscle biopsy are that it is an invasive surgical procedure performed under a local anesthetic, it cannot be

applied repetitively, and it is spatially localized and hence less indicative of the entire tissue state.44 MRI's measure of the water transverse relaxa-

tion time (T2) has been shown to correlate with dystrophin expression and to therapeutic efficiency in a dog model of Duchenne muscle

dystrophy.45 Hence, noninvasively monitoring the T2 of muscle, that is, of the water components, has the potential to provide additional insight

to the tissue's biochemical state.

The early detection of neuromuscular disorders is of significant importance, because the only way to slow down the progression of these dis-

orders is to treat the diseased muscle tissue prior to the infiltration of fat. Once fat infiltration crosses a certain threshold, the disease is consid-

ered to be too advanced and there is not much physicians can do. qMRI's transverse relaxation time provides, in this case, an effective and early

marker of the muscle status and treatment response. Adding this value to the standard fat/water fraction may thus assist physicians in the early

detection of neuromuscular disorders.

Notwithstanding its advantages, the extended EMC algorithm is still limited when analyzing water content and T2 values in muscle tissues

where fat levels are 50% and above. The very low water content in these regions, combined with their short T2 relaxation times (�30 ms), leads

to very low SNR of the water signal and makes it challenging to quantify these values, particularly when using MESE protocols which are limited

to sampling the time domain with an echo spacing of 8–10 ms and above. Such conditions emerge at severely diseased regions, leading to ambi-

guities in the three-parameter fit, where several EMCs with different TW
2 ,TF

2, fW
� �

values may produce similar decay curves. We believe that this is

not highly limiting from a clinical perspective because at such advanced disease levels the clinically relevant parameter is actually the relative frac-

tion of fat and the volume of remaining muscle tissue. The three-parameter fitting process also had ambiguity, which was overcome by fixing the

fat T2 value to its value at the SC fat region (step (c) in the extended EMC algorithm) and introducing it as a known input in step (d) of the algo-

rithm (Figure 1). A central assumption in our study is that once disease sets in, the entire muscle is affected, and no muscle region can be consid-

ered genuinely healthy. One can only state that the disease does not yet show on MR images in some parts of the muscle. SC fat was therefore

chosen as a stable reference point that is assumed not to change as the disease appears and progresses. Another potential limitation of using a

MESE protocol is magnetization transfer (MT) effects that might influence water and fat differently. It was previously shown that these can atten-

uate the water signal, and while having little effect on the estimated T2 value,46 they can potentially bias the relative fraction measured for fat

and for water depending on the saturation efficiency and transfer rate of each component. Investigation of this mechanism and its integration into

the extended EMC processing is part of an ongoing analysis of MT effects.

Contrary to analyzing signals with low water contents, two-component fitting algorithms are able to estimate very low levels of fat because

of the relatively high SNR of this component. This is for two reasons. First, fat has a relatively long T2, allowing to sample a large number of

timepoints before its signal drops below the noise level. Second, the longitudinal T1 relaxation time of fat is relatively short, �365 ms, compared

with muscle, which is �1400 ms.47,48 Fat's longitudinal magnetization thus recovers very efficiently between each TR, resulting in higher steady

state signal levels.

The EMC's fitting process is performed via a three-parameter exhaustive search, scanning over the physiological ranges of the TW
2 , TF

2, and fW

parameters. The resulting fitting time is �1min per slice on a standard PC (see Section S4). Other, more sophisticated, optimization algorithms

(such as Monte Carlo or gradient descent search schemes) could be used to decrease the computation time.49 The drawback of such algorithms is

that most of them rely on a convex search space with one global minimum, which may lead to finding a local, rather than the global, minimum. We

thus chose the exhaustive, yet robust approach, in this proof-of-principle study, and employed parallel computing to decrease the overall

fitting time.

The two-component EMC fitting technique can be extended to other tissues, including the quantification of fat in fatty liver disease,50 early

detection of multiple sclerosis via quantification of the myelin component,51,52 imaging luminal water for the detection of prostate cancer,51 and

the differentiation between fat and glandular tissue and lesions for early detection of breast cancer.53

The FCNN's ground truth muscle and SC fat maps were delineated by an expert with more than 10 years of experience. The entire develop-

ment process is described in Amer et al.26,54 A more rigorous development process where multiple experts provide the ground truth might have

produced a more robust network. Previous work, however, used one expert for ground truth, while similar applications have been shown to per-

form well.54–58

The fat component in the extended EMC algorithm was assumed to originate only from the methylene peak of the fat molecule. This is a limi-

tation of this study because although this is the most abundant peak, the full fat spectrum contains other, smaller peaks. Future work is required

to expand the EMC algorithm to model multipeak signals.

5 | CONCLUSIONS

This work demonstrated the utility of the extended EMC algorithm as a tool for accurately quantifying the relative fat and water in muscle tissues

in addition to producing quantitative parametric maps of muscle and fat T2 values. The ensuing framework provides values that are stable across
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scanner and scan settings and includes automated muscle segmentation and the VMI biomarker calculation, offering a global and quantitative tool

for staging and monitoring neuromuscular dystrophies.
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